
Green gas (SNG) in the Dutch energy infrastructure

H. Boerrigter

Presented at the Wetsus Meeting, Workshop Energy 30 March 2006 Leeuwarden, the Netherlands

APRIL 2006

Green Gas (SNG) in the Dutch Energy Infrastructure

Green Gas (SNG) in the Dutch Energy Infrastructure Potential & Implementation

Dr. ir. Harold Boerrigter

Energy research Centre of the Netherlands (ECN) ECN Biomass, Coal & Environmental research

Content

- Introduction on ECN
- Definitions
- Motivation for Green Gas
- Potential & application
- Green Gas & SNG implementation
- Biomass availability and import
- Economy of SNG production
- · SNG development trajectory
- Conclusions

(3) ECN Biomass, Harold Boerrigter

Vetsus Workshop *Energy*, 30 March 2006, Leeuwarder

www.ecn.nl

ECN-RX--06-072 3

Energy research Centre of the Netherlands

in the dunes of North Holland

- · Independent energy research institute
- Founded in 1955
- Annual turnover: 80 million EURO
- Activities:
- Biomass & Coal
- Solar
- Wind
- Fuel Cells
- CO₂ Capture & Storage
- Energy Efficiency
- Policy Studies

ECN in a glance

Mission

- ECN is the largest, independent, market oriented, and innovative Dutch energy research institute.
- A sustainable development is the guiding principle for all ECN activities.
- ECN investigates and develops technologies and products for a safe, efficient, and environment-friendly energy supply.
- ECN bridges the gap between research and market application.

ECN develops high-quality knowledge and technology for the transition to a sustainable energy supply

Definition of "Green Gas"

Biogas and SNG

Biogas Landfill gas - produced by digestion, contains mainly CH₄ and CO₂

- product of landfills, composition similar to biogas

- "Synthetic Natural Gas", contains mainly CH₄
- produced via gasification followed by methanation
- main sources: coal and biomass

bio-SNG

SNG

- SNG from biomass

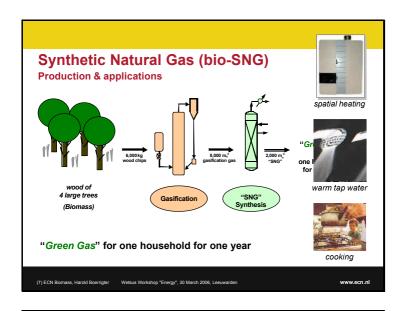
"green natural gas" or "green gas"

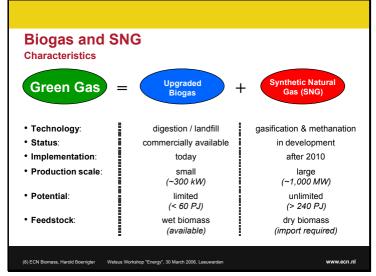
- comprising both bio-SNG and upgraded biogas/landfill gas

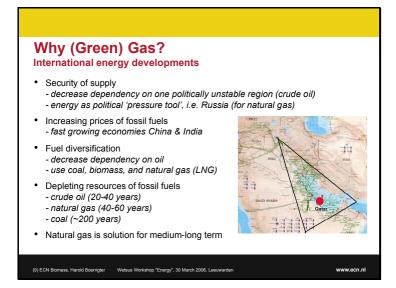
- complies with specifications for injection to natural gas grid - has same properties as natural gas - can be used in all existing equipment

Syngas

- synthesis gas: $\rm H_2$ and CO (and CO₂ and $\rm H_2O)$; of fossil origin - produced via gasification or reforming of coal, oil residues, or natural gas


Biosyngas Product gas


biomass origin; chemical identical to syngas
 produced via high-temperature (>1200°C) or catalytic gasification


- produced via low-temperature (<1000°C) gasification - contains $\rm H_2$, CO, CH $_4$, CxHy incl. tar (and CO $_2$ and H $_2$ O)

(6) ECN Biomass, Harold Boerrigter

Wetsus Workshop "Energy", 30 March 2006, Leeu

ECN-RX--06-072 5

Why Green Gas?

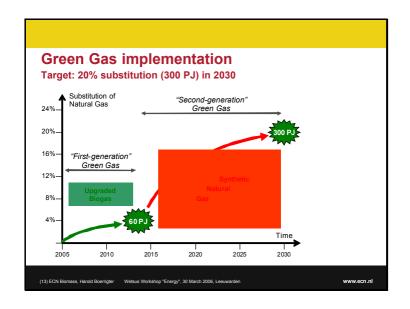
Environmental considerations

- Reduction of Greenhouse Gas (GHG) emissions
 - Kyoto protocol (CO₂)
- Agricultural development
 - production of biomass in EU-25
 - job creation & rural development
- · Local emissions
- gas is a clean fuel
- reduce local emissions from transport
- EU targets for natural gas as transport fuel
- Implementation
 - natural gas market is growing
 - Green Gas is additional to natural gas
 - in time Green Gas can compensate for decrease in natural gas

Why Green Gas?

Netherlands situation

- Security of supply is not a big issue (for natural gas)
- Renewable energy targets are main driver (Kyoto)
- substitution of 10% primary energy by renewables in 2020 biofuels: 2% in 2005, 5.75% in 2010, and 15% in 2020
- · "Energy Transition" of government
 - 30% substitution of primary energy by renewables in 2040
- Energy Transition Working Group "Green Gas" (proposal):
 - => 20% substitution of natural gas by Green Gas in 2030

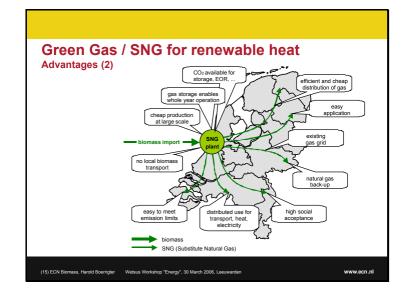

Potential of Green Gas

Netherlands situation

• In the Netherlands (2004), in total 3,300 PJ primary energy is consumed:

[PJ/y]	Coal	Crude oil	Natural Gas	Other	Total
Electricity	200	10	350	300	860
Transport		480		10	490
Heat	40	240	1,100	20	1,400
Chemistry	70	370	90	20	550
Total	310	1,100	1,540	350	3,300

- 20% natural gas substitution = 300 PJ "Green Gas"
- Large potential for Green Gas = HEAT
 - 40% of heat is used by distributed small consumers (i.e. households)
 - 96% of this heat is from natural gas combustion



Green Gas / SNG for renewable heat Advantages (1) The advantages of SNG for distributed heat production are: large-scale production / small-scale utilization gas storage: production all year efficient distribution: 1% (S)NG loss vs. typically 15% energy loss in heat distribution systems no new infrastructure needed SNG combustion: easy-to-meet local emission limits high social acceptance natural gas back-up (security of supply!)

• ease of introduction: only few industrial partners, but many end-users

free market possibility (similar to green electricity)

iomass, Harold Boerrigter Wetsus Workshop "Energy", 30 March 2006, Leeuwarden www.ecn

ECN-RX--06-072 7

Green Gas / SNG for renewable heat

Alternatives

• Local biomass combustion

Disadvantages: large number of small-scale plants in populated areas, relative expensive due to small scale

• Combined Heat & Power (CHP) plants

Disadvantages: large number of small-scale plants, relative expensively due to small scale, electricity and heat demand not in balance

All electric heating

Disadvantages: new equipment, new power capacity and network expansion required, only high efficiency combined with (expensive!) heat pumps

=> <u>SNG is the best route for the large-scale production of renewable heat</u> large-scale centralized production plants, transport via existing gas grid, local consumption, clean conversion

(16) ECN Biomass. Harold Boerrigte

etsus Workshop "Energy", 30 March 2006, Leeuwarden

www.ecn.nl

Green Gas implementation

Required SNG production capacity

- · Biomass feedstock is imported in the Netherlands
- Biomass available in large amounts in few harbours
- Typical SNG production plant = 1,000 MW_{th}
- Total 12 plants required
- Total annual biomass consumption:
 - 20 million tonnes per year
 - 1.7 million tonnes per plant


• Is that a lot? YES

Is that unrealistic?

(17) ECN Biomass, Harold Boerrigter

etsus Workshop "Energy", 30 March 2006, Leeuwarder

www.ecn.n

Required biomass import

References (1)

Import & Export by sea shipping (2004)			Transhipment [million tonnes per year]				
Harbour	Position	Share	Total	Coal	Crude oil & Oil products	Ores & Minerals	
Netherlands	-	100%	463.8	46.7	160.7	71.0	
Rotterdam	1	76%	352.0	25.3	136.0	50.0	
Amsterdam	2	11%	50.0	12.7	16.0	6.4	
IJmuiden	3	4%	18.0	5.8	0.3	9.0	
Delfzijl & Eemshaven	7	0.5%	2.3	0.008	0.013	1.2	

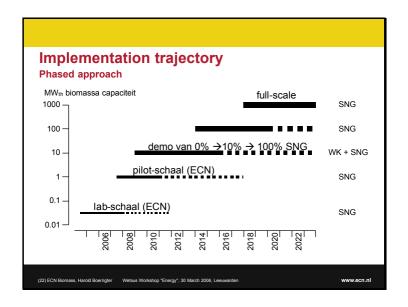
- · Total biomass requirement for SNG
 - same range as today's coal transhipment in Rotterdam
 - 4.3% increase for total Netherlands transhipment (in 2030)
- Biomass for one plant
 - would double transhipment in Delfzijl

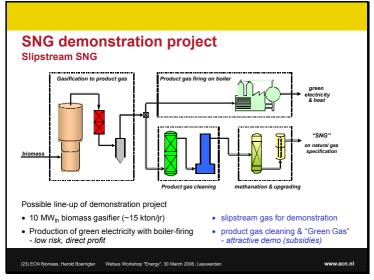
Required biomass import

References (2)

Organic materials (2000) [kton/year]	Import	Export	Transhipment
Wood & Pulp	7,010	3,462	10,472
Oil seeds	7,133	1,845	8,978
Meat, Fish & Dairy	2,995	5,028	8,023
Cereals	6,413	630	7,043
Sugar & Cacao	1,926	1,856	3,782

- · Total biomass requirement for SNG
 - double of today's would & pulp transhipment
- · Biomass for one plant
 - same order as today's import of sugar & cacao
 - today's cereals transhipment equals biomass import for three SNG plants


Economy


For large-scale SNG production in 2030

- The projected long-term production costs of SNG = ~10 €/GJ_{SNG}
- - 4 €/GJ, with a natural gas price = 6 €/GJ
 - equivalent to ~1.5 €ct/kWh electricity
 carbon costs: ~75 € per ton CO₂
- · Support options:
 - subsidy (e.g. "Gas MEP") of 4 €/GJ
 - establishment of CO2 trading market
 - additional costs of ~2.0 €ct for each m_n³ gas consumed
- But what happens to the natural gas price in 2030?
 - increase to level of SNG production costs
- Financial support required for Development and Demonstration
 - new technology
- first plants are small scale

(21) ECN Biomass, Harold Boerrigter Wetsus Workshop "Energy", 30 March 2006, Leeuwarder

www.ecn.nl

Conclusions

- Natural gas increasingly important as fuel for medium-long term
- Green Gas important as renewable fuel
- Green Gas comprises biogas and SNG; SNG will be main source
- SNG mainly for heat in the Netherlands, excellent existing infrastructure
- Biomass import required to meet targets
 - sufficient biomass available globally
 - logistics easily adaptable in existing infrastructure
- Today, SNG is more expensive than natural gas
- but SNG is more attractive option and most green electricity routes
- Implementation via phased approach with stepwise larger plants
- Development & Demonstration requires financial support
- SNG offers excellent opportunities for Dutch industry.

Thank you for your attention

For more information, please contact:

Dr. ir. Harold Boerrigter phone +31 224 56 4591

+31 224 56 8487 email boerrigter@ecn.nl Publications can be found on:

www.ecn.nl/en/bkm

Visit also: "Phyllis" - internet database for biomass, coal, and

residues: www.phyllis.nl

"Thersites" – internet model for tar dewpoint calculations:

www.thersites.nl

fax

ECN Biomass, Coal & Environmental Research

Programme & Mission

Development of knowledge, concepts and (conversion) technologies for a cleaner environment and a sustainable use of biomass and/or coal for the production of energy, fuels and products.

Biomass research program

- Gasification and Gas Conditioning
- Heat and Power production
- Biofuels and Refinery Processes
- · Environmental research program
- · Air Quality and Climate Change Environmental Risk Assessment
- Emission Reduction Technology

Gasification and Gas Condition