The Economy of Large Scale Biomass to Substitute Natural Gas (bioSNG) plants

G. Aranda
A. van der Drift
R. Smit

January 2014
ECN-E-14-008
Acknowledgement

The work described in this report was performed as part of the EDGaR-project SNG-impact with ECN project number 51244.

Abstract

In this work, an economic assessment of large-scale production of Synthetic Natural Gas from biomass (bioSNG) has been carried out. With the aim of estimating the total capital investment of a large-scale bioSNG facility, different commercial plants based on gasification technology, including Gas-to-Liquids (GTL), Coal-to-Liquids (CTL), Coal-to-methanol (CTM), Coal-to-SNG (CSNG), and Integrated Gasification Combined Cycle (IGCC) have been used as references. The layout for SNG production from biomass is based on MILENA indirect gasification (technology developed by ECN). The average Total Capital Investment (TCI) for a large bioSNG plant (1 GW thermal input) has been determined as ~1530 USD2013/kWinput. Technology learning could further decrease the TCI of a bioSNG plant with about 30% to 1100 USD2013/kWinput after a cumulative number of 10 GW installed capacity. A TCI of 1100 USD2013/kWinput results in an overall bioSNG cost price of 14-24 USD2013/GJ, largely depending on the price of biomass feedstock. From three scenarios considered (wood chips in Europe and United States, or cheap agricultural residues from Brazil/India), the latter is the best in terms of cost price of SNG. However, Europe offers several advantages for the deployment of SNG from biomass, e.g. existing natural gas infrastructure, and an existing SNG market based on incentives and obligations. Internalization of CO$_2$ emissions in the 2030 untaxed price of SNG reveals that bioSNG can be competitive with SNG produced from coal, with a cost of 25 USD2013/GJ. Even so, medium-term bioSNG prices are expected to remain higher than future natural gas prices. However, the implementation of concepts such as the co-production of bioSNG/bioLNG and chemicals/biofuels, the capture and storage of CO$_2$, or power-to-gas systems will contribute to enhance the business case of bioSNG production. ECN is working on all these topics.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>5</td>
</tr>
<tr>
<td>Summary</td>
<td>7</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>9</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>10</td>
</tr>
<tr>
<td>1.1 Synthetic Natural Gas (SNG) as energy carrier</td>
<td>10</td>
</tr>
<tr>
<td>1.2 SNG production from carbonaceous fuels</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Scope and outline of this report</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Methodology for TCI estimation</td>
<td>12</td>
</tr>
<tr>
<td>1.5 MILENA indirect gasification for SNG production</td>
<td>13</td>
</tr>
<tr>
<td>2. TCI of reference plants</td>
<td>15</td>
</tr>
<tr>
<td>3. Normalized equipment cost of a bioSNG plant</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Gas-to liquids vs. biomass-to-SNG</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Coal-to-liquids vs. biomass-to-SNG</td>
<td>30</td>
</tr>
<tr>
<td>3.3 Coal-to-methanol vs. biomass-to-SNG</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Coal-to-SNG vs. biomass-to-SNG</td>
<td>35</td>
</tr>
<tr>
<td>3.5 Integrated gasification combined cycle vs. biomass-to-SNG</td>
<td>37</td>
</tr>
<tr>
<td>3.6 Results on normalized equipment cost</td>
<td>38</td>
</tr>
<tr>
<td>4. Total Capital Investment for a bioSNG plant</td>
<td>39</td>
</tr>
<tr>
<td>5. BioSNG cost price</td>
<td>41</td>
</tr>
<tr>
<td>5.1 Assumptions</td>
<td>41</td>
</tr>
<tr>
<td>5.2 Results</td>
<td>42</td>
</tr>
<tr>
<td>5.3 Internalization of CO₂ emissions costs in bioSNG price</td>
<td>45</td>
</tr>
<tr>
<td>6. Outlook</td>
<td>47</td>
</tr>
<tr>
<td>7. Conclusions</td>
<td>49</td>
</tr>
</tbody>
</table>
In this work, an economic assessment of large-scale production of Synthetic Natural Gas (SNG) from biomass is carried out. With the aim of estimating the total capital investment of a large-scale bioSNG facility, different commercial plants based on gasification technology have been used as references, including Gas-to-Liquids (GTL), Coal-to-Liquids (CTL), Coal-to-methanol (CTM), Coal-to-SNG (CSNG), and Integrated Gasification Combined Cycle (IGCC). Due to the uncertainty of the reported investment of plants (caused by differences of scale and start-up year, cost escalation, co-production, reporting policies, etc.), a large number of references has been used in order to obtain a credible, realistic average value. The reference layout for SNG production from biomass is based on MILENA indirect gasification (technology developed by ECN).

In addition, a systematic comparison between technologies has been carried out in order to incorporate the technical differences of bioSNG technology into the estimated total capital investment. Analysis has shown that biomass-to-SNG ranges from +5% to +30% compared to the selected commercial reference technologies.

Based on absolute cost references of operating or under construction large-scale plants, and taking into account the technical differences with respect to a bioSNG plant, the averaged Total Capital Investment (TCI) for a large (1 GW_{input}) bioSNG plant has been determined as ~1530 USD\textsubscript{2013}/kW_{input}.

The effect of technology learning, also considered in the study, has been assumed to be able to further decrease the TCI of a bioSNG plant with about 30% to 1100 USD\textsubscript{2013}/kW_{input} after a cumulative number of 10 GW installed capacity (medium-term, e.g. in 2030).

A TCI of 1100 USD\textsubscript{2013}/kW_{input} results in an overall bioSNG cost price ranging between 14-24 USD\textsubscript{2013}/GJ or 0.45-0.77 USD\textsubscript{2013}/Nm3 (Groningen quality gas). The cost price for 1 GJ of bioSNG largely depends on the price of the biomass feedstock (2-9 USD\textsubscript{2013}/GJ), and therefore, on the plant location. Using medium-term projections of prices of biofuels, it has been found that bioSNG has a lower cost in terms of energy content than liquid biofuels. However, untaxed prices cannot be competitive with current fossil natural gas prices. From the three scenarios considered (wood chips in Europe and United States, or inexpensive agricultural residues from Brazil/India), the latter is the best in terms of cost price of SNG. However, Europe offers several advantages for the deployment of bioSNG, such as a developed natural gas infrastructure, and the current existence of a market based on incentives and obligations.
Finally, in order to take into account the cost of CO₂ emissions during the cycle life of SNG, cost of CO₂ emissions has been added into the medium-term price of natural gas and SNG produced from coal and biomass. Results of internalization of CO₂ emission cost in the 2030 untaxed price of SNG have shown that bioSNG can be competitive with SNG produced from coal, with a cost of 25 USD\textsubscript{2013}/GJ. Even so, medium-term bioSNG prices are expected to remain higher than future natural gas prices. However, the implementation of concepts such as the co-production of bioSNG/bioLNG and chemicals/biofuels, the capture and storage of CO₂, or power-to-gas systems will contribute to enhance the business case of bioSNG production. ECN is working on all these topics.
Nomenclature

ASU: Air separation unit.
bbl/day: Barrels/day.
bcf/y: Billion cubic feet/year.
bcm/y: Billion cubic meter/year.
bioLNG: Liquefied Natural Gas produced from biomass gasification.
bioSNG: Synthetic Natural Gas produced from biomass gasification.
BTL: Biomass to liquids.
CCS: Carbon Capture and Storage.
CNY: Chinese yuan renminbi (1 CNY = 0.163 USD).
CTL: Coal to liquids (diesel and naphtha transportation liquid fuels).
CTM: Coal to methanol.
CSNG: Coal to SNG.
DME: Dimethyl ether.
EUR: Euro (1 EUR = 1.359 USD).
F-T: Fischer-Tropsch.
HC: Hydrocarbons.
HDS: Hydrodesulphurization.
ISBL: Inside battery limits.
IGCC: Integrated gasification combined cycle.
LHV: Lower heating value (MJ/kg or MJ/Nm³).
LPG: Liquefied petroleum gases.
MDEA: Methyl diethanolamine.
MeOH: Methanol.
Mscf: Million standard cubic feet.
O & M: Operation and maintenance.
P2G: Power-to-gas.
SNG: Synthetic natural gas.
TCI: Total Capital Investment.
USD: American dollar.
WGS: Water-gas shift.
1

Introduction

1.1 Synthetic Natural Gas (SNG) as energy carrier

SNG (Substitute Natural Gas, or Synthetic Natural Gas) is defined as a gas containing mostly CH₄ (> 95% vol.), with similar properties to natural gas, which can be produced from thermochemical gasification of fuels (e.g. coal, biomass) coupled to subsequent methanation. Conversion efficiency of coal/biomass to SNG is higher than the efficiency to liquid fuels [1]. Overall efficiency of conversion from biomass to SNG can be up to 70% in energy basis [2][3].

Due to its interchangeability with natural gas, the use of SNG has a number of advantages. SNG can be efficiently converted in a number of well-established end-use technologies. It can be cheaply produced at large scale, and is a storable energy carrier, thus enabling whole year operation independently of fluctuations in demand. Moreover, SNG can be injected into the existing grid and easily distributed for transport, heat, and electricity applications. As well as natural gas, SNG has a high social acceptance compared to coal [1][4][5][6].

SNG not only can be considered as an attractive, versatile energy carrier for bioenergy, but also can be used for storage of surplus power from renewable sources (e.g. solar, wind). This is the so-called “power-to-gas” concept where excess power produces H₂ that is added to an existing SNG-plant to convert additional CO₂ into CH₄.

Addition of CO₂ storage technology into the SNG process in coal-to-SNG plants is crucial in order to reduce its environmental footprint. Biomass-based SNG could also be combined with CO₂ storage to further reduce emissions, even making negative CO₂ emissions possible [7].
1.2 SNG production from carbonaceous fuels

Thermochemical production of SNG from coal or biomass includes the following steps:

- Feedstock pre-treatment: drying, crushing, etc.
- Gasification stage.
- Syngas cooling, cleaning and conditioning: gas produced in the gasification stage must be cleaned from contaminants (sulphur compounds, nitrogen compounds, heavy metals, etc.), and its composition (H₂/CO ratio, CO₂ content) must be adjusted prior to the synthesis stage.
- Methanation: syngas is converted into CH₄ through an exothermic reaction.
- SNG conditioning: in order to comply with grid requirements, SNG composition might be adjusted.

There are several possible criteria for the classification of gasification processes. Depending on the method of heat supply, gasification technologies can be classified in direct and indirect. In direct gasification, the heat required for the endothermic devolatilization and gasification reactions is provided by the combustion of a fraction of the feedstock. On the contrary, in indirect gasification processes, gasification and combustion stages are physically separated, and heat is transferred between both reactors via a heat carrier (e.g. bed material). Indirect gasification allows the production of a N₂-free product gas without the need for an expensive air separation unit. As a result, syngas contains a high concentration of CH₄. These advantages make indirect gasification an attractive option for SNG production. In particular, ECN has developed the MILENA indirect gasification technology, described in more detail in section 1.5 of this document.

1.3 Scope and outline of this report

Although bioSNG is considered an interesting energy carrier, there are no operating plants available yet that can be used to estimate the costs of a bioSNG plant. This report aims to present an estimation of the costs of a large-scale plant in a future where bioSNG production is conventional technology. A realistic estimation of the Total Capital Investment (TCI) of a bioSNG plant is crucial for calculation of the bioSNG cost price.

With this background, this report presents the estimation of the Total Capital Investment (TCI) of SNG produced from biomass from the basis of reference technologically large-scale commercial plants which use gasification as the first process step. Section 2 of this document presents the results of specific costs in USD₂₀₁₃/kW referred to a 1 GW thermal input capacity plant for each one of the reference technologies based on the absolute TCI of the facilities selected, and taking into account their different size and start-up date. The technical differences between the reference technologies and a bioSNG plant have been analysed and incorporated into the cost of a bioSNG plant in Section 3. The effect of technology learning on the TCI costs is analysed in Section 4. Finally, based on the estimated TCI after technical learning, a cost price for bioSNG is derived and discussed in Section 5. A number of appendices provides
additional information on data and methodology used in this work, as well as on some reference plants.

1.4 Methodology for TCI estimation

There are two approaches for estimating the Total Capital Investment of a bioSNG plant:

a) From reference data of technologically similar facilities, applying different factors to cope with different scale, start-up year, etc.

b) Bottom-up method, where basic engineering is carried out for the plant and cost estimations are based on a process flow diagram, energy and mass balances, and quotes for major equipment.

In this report, method a) has been selected for a first estimation of costs due to lower complexity, and to the high uncertainty of results from method b).

Figure 1: Methodology for estimation of Total Capital Investment of a large bioSNG plant used in this work.

The TCI for a large-scale and technically mature bioSNG plant has been estimated by using a 3-step methodology (Figure 1):

- Step 1. A list of reference gasification plants has been collected from an extensive literature review. The following technologies have been selected for the study due to its maturity and commercial status:
- Gas to liquids (GTL).
- Coal to liquids (CTL).
- Coal to methanol (CTM).
- Coal to SNG (CSNG).
- Integrated Gasification Combined Cycle (IGCC).

From the available references, only large-scale operational or under construction plants have been considered in order to get a realistic and credible estimation of costs. Moreover, a large number of references has been selected in order to get a realistic average value by reducing the uncertainty of the reported investment costs of plants. The absolute TCI of the facilities selected has been used to derive the specific cost in terms of USD_{2013}/kW for a 1 GW input capacity plant, thus taking into account the different size and start-up date of the facilities considered. This step is presented in section 2 of this report.

- Step 2. The reference technologies have also been systematically compared with a bioSNG process in order to take into account the technical differences between processes, and translate them into the plant cost of a bioSNG plant. The procedure and results of this analysis are shown in Section 3.

- Step 3. Finally, for a future projection, the TCI updated in step 2 is adjusted to take into account learning effects, resulting in a TCI value that can be expected after implementing 10 GW bioSNG capacity cumulatively (i.e., building 10 units of 1 GW each). The results are presented in Section 4.

1.5 MILENA indirect gasification for SNG production

For a proper comparison of the different technologies considered in this work, a layout for a bioSNG plant has been proposed (Figure 2). MILENA indirect gasification and OLGA tar removal system, technologies developed by ECN, have been selected due to the high potential efficiency for SNG production [3].

Figure 2: Schematic layout of proposed bioSNG plant based on MILENA indirect gasification.

MILENA technology (shown in Figure 3), incorporates several improvements with respect to existing indirect gasification concepts. Firstly, gasification and combustion reactors are placed in one single vessel for both reactors. This makes the system cheaper, easier to pressurize, and with less heat loss. Moreover, there is only a single
bed material circulation mass flow restriction to avoid imbalances. MILENA offers higher efficiency due to a minimum amount of gas/steam for the gasification reactor. The implementation of a settling chamber instead of cyclone for gas/bed material separation allows reducing start-up issues and increasing the ability to cope with flow disturbances. In MILENA gasification, biomass undergoes devolatilization in the riser, whereas the remaining char descends through the downcomer and is combusted in the fluidized bed. Therefore, complete conversion of the feedstock is achieved.

The net overall efficiency for SNG production from MILENA indirect gasification is reported to be ~70% (LHV basis) \[3\]. MILENA gasification could be scaled up to 1 GW. This 10 m diameter, 20 m height reactor would be operated at a pressure of 7 bar. ECN is currently performing research and development activities on gas cleaning mainly based on catalytic removal of trace components, high temperature reforming of hydrocarbons, hydrogenation of unsaturated hydrocarbons and removal of sulphur and chlorine components.

Figure 3: MILENA gasification technology \[3\].
As described in Section 1, the first step for the estimation of the Total Capital Investment (TCI) of a bioSNG plant is the gathering of data from literature corresponding to large-scale commercial gasification plants in operation or under construction. The reported investment of plants may vary from case to case not only because of differences of scale and start-up year of plants, but also due to cost escalations, co-production, greenfield/brownfield projects, and reporting policies. Therefore, in order to reduce this uncertainty and obtain a credible average value, it is necessary to use a large number of references.

Table 1-Table 5 summarize the performance and cost data of the different facilities considered in this study, categorized as a function of the technology (GTL, CTL, CTM, CSNG, and IGCC). Each reference plant includes start-up year, plant scale, and total capital investment (TCI, expressed in American dollars, USD). Values of specific costs obtained from literature are not comparable with each other, since the plant scale and start-up year are different. For this reason, specific costs have been normalized to a plant size of 1 GW thermal input. An average value of 0.7 has been selected in this work for the scaling factor applied [8]. The normalized costs have also been adjusted to inflation. In this work, 2.65% annual inflation has been assumed, value corresponding to the average inflation in United States in the period 2000-2013 [9][10]. Specific investment costs shown in Table 1-Table 5 are thus expressed in terms of million USD\textsubscript{2013}/kW\textsubscript{input}.

Appendix A of this document summarizes the assumptions made for the calculations, including efficiencies of technologies, conversion factors, and formulae used for calculations. Appendix B reviews the state of the art of selected technologies. Moreover, due to the possible distortion of the calculated investment costs, neither biomass-to-liquids nor biomass-to-SNG facilities have been included in this analysis. Nevertheless, a brief review of BTL and bioSNG European projects is presented in Appendix C of the document.
Table 1: Performance and cost data of reference gas-to-liquids (GTL) plants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (bbl/day)</th>
<th>Plant output (GW)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL1</td>
<td>Petrosa, Mossel Bay GTL</td>
<td>Mossel Bay, Western Cape, South Africa</td>
<td>45 000</td>
<td>2.70</td>
<td>1.5</td>
<td>1992</td>
<td>910</td>
<td>[11][12][13][14][15][16][17][18]</td>
</tr>
<tr>
<td>GTL2</td>
<td>Shell Bintulu SMDS</td>
<td>Bintulu, Sarawak, Borneo, Malaysia</td>
<td>14 700</td>
<td>0.88</td>
<td>0.85</td>
<td>1993</td>
<td>1100</td>
<td>[19][20][21][22]</td>
</tr>
<tr>
<td>GTL3</td>
<td>Qatar Petroleum/ Sasol, Oryx GTL</td>
<td>Ras Laffan Industrial City, Qatar</td>
<td>34 000</td>
<td>2.04</td>
<td>1</td>
<td>2006</td>
<td>510</td>
<td>[22][23][24][25][26][27][28]</td>
</tr>
<tr>
<td>GTL4</td>
<td>Shell Pearl GTL INITIAL</td>
<td>Ras Laffan Industrial City, Qatar</td>
<td>140 000</td>
<td>8.39</td>
<td>5</td>
<td>2003</td>
<td>1025</td>
<td>[22][29][30][31]</td>
</tr>
<tr>
<td>GTL5</td>
<td>Shell Pearl GTL ACTUAL</td>
<td>Ras Laffan Industrial City, Qatar</td>
<td>140 000</td>
<td>8.39</td>
<td>19</td>
<td>2011</td>
<td>3160</td>
<td></td>
</tr>
<tr>
<td>GTL6</td>
<td>Sasol/ Chevron/ NNPC. Escravos GTL INITIAL</td>
<td>Lagos, Nigeria</td>
<td>34 000</td>
<td>2.04</td>
<td>3</td>
<td>2010</td>
<td>1380</td>
<td>[22][32][33][34][35][36][37]</td>
</tr>
<tr>
<td>GTL7</td>
<td>Sasol/ Chevron/ NNPC. Escravos GTL ACTUAL</td>
<td>Lagos, Nigeria</td>
<td>34 000</td>
<td>2.04</td>
<td>8.4</td>
<td>2013</td>
<td>3570</td>
<td></td>
</tr>
<tr>
<td>GTL8</td>
<td>Sasol/Uzbekneftegaz/Petronas GTL</td>
<td>Qarshi, Uzbekistan</td>
<td>38 000</td>
<td>2.28</td>
<td>2.5</td>
<td>2016 - 2017</td>
<td>980</td>
<td>[38][39]</td>
</tr>
<tr>
<td>GTL9</td>
<td>Sasol, Lake Charles</td>
<td>Lake Charles, Louisiana, USA</td>
<td>96 000</td>
<td>5.75</td>
<td>16</td>
<td>2018 - 2019</td>
<td>3290</td>
<td>[40][41][42][43][44][45]</td>
</tr>
</tbody>
</table>
Table 2: Performance and cost data of reference coal-to-liquids (CTL) plants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (bbl/day)</th>
<th>Plant output (ton/year)</th>
<th>Plant output (GW)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD/1 GW input)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL.1</td>
<td>Sasol, Sasolburg CTL</td>
<td>Sasolburg, South Africa</td>
<td>15 600</td>
<td>-</td>
<td>0.96</td>
<td>0.45</td>
<td>1955</td>
<td>1280</td>
<td>[46][47][48]</td>
</tr>
<tr>
<td>CTL.2</td>
<td>Sasol, Secunda CTL</td>
<td>Secunda, South Africa</td>
<td>160 000</td>
<td>-</td>
<td>9.29</td>
<td>5.7</td>
<td>1980 / 1984</td>
<td>1720</td>
<td>[46][47][48][49][50][51][52]</td>
</tr>
<tr>
<td>CTL.3</td>
<td>Shenhua Group Co. Ltd., Inner Mongolia CTL</td>
<td>Ordos, Inner Mongolia, China</td>
<td>-</td>
<td>3 200 000</td>
<td>4.43</td>
<td>2.76</td>
<td>2010</td>
<td>640</td>
<td>[53]</td>
</tr>
<tr>
<td>CTL.4</td>
<td>Shenhua Ningmei Group / Sasol Synfuels, Pingxiao Hui CTL Plant</td>
<td>NingDong chemical base, Ningxia, China</td>
<td>80 000</td>
<td>3 200 000</td>
<td>4.65</td>
<td>8.7</td>
<td>2010</td>
<td>1950</td>
<td>[53][54][55][56][57][58]</td>
</tr>
<tr>
<td>CTL.5</td>
<td>Shenhua Direct Coal Liquefaction Project</td>
<td>Ordos, Inner Mongolia, China</td>
<td>24 000</td>
<td>-</td>
<td>1.39</td>
<td>1.5</td>
<td>2008</td>
<td>820</td>
<td>[53][58][66][67][68]</td>
</tr>
<tr>
<td>CTL.6</td>
<td>Yankuang Shaanxi Future Energy Chemical Co., Ltd.</td>
<td>Yulin, Shaanxi, China</td>
<td>-</td>
<td>1 000 000</td>
<td>1.38</td>
<td>2.4</td>
<td>2013</td>
<td>1160</td>
<td>[53][58]</td>
</tr>
<tr>
<td>CTL.7</td>
<td>Yi'tai Group</td>
<td>Ganquanpu or Yili, Xinjiang, China</td>
<td>-</td>
<td>5 400 000</td>
<td>7.47</td>
<td>10.3</td>
<td>2013</td>
<td>1530</td>
<td>[53][58]</td>
</tr>
<tr>
<td>CTL.8</td>
<td>American Lignite Energy CTL</td>
<td>McLean county, North Dakota, USA</td>
<td>32 000</td>
<td>-</td>
<td>1.86</td>
<td>4</td>
<td>-</td>
<td>1570</td>
<td>[69][70]</td>
</tr>
<tr>
<td>CTL.9</td>
<td>Fox Creek CTL</td>
<td>Fox Creek, Alberta, Canada</td>
<td>40 000</td>
<td>-</td>
<td>2.32</td>
<td>4.5</td>
<td>2014-15</td>
<td>1510</td>
<td>[71][72][73][74]</td>
</tr>
<tr>
<td>CTL.10</td>
<td>H&WB CTL Facility</td>
<td>Bataan, Philippines</td>
<td>60 000</td>
<td>-</td>
<td>3.48</td>
<td>2.8</td>
<td>2013</td>
<td>710</td>
<td>[75][76]</td>
</tr>
<tr>
<td>CTL.11</td>
<td>Likuen Coal Liquefaction Project</td>
<td>La Guajira / Santander / Cundinamarca and Boyacá, Colombia</td>
<td>50 000</td>
<td>-</td>
<td>2.90</td>
<td>2</td>
<td>2013</td>
<td>580</td>
<td>[77][78][79]</td>
</tr>
</tbody>
</table>
Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (ton/year)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD\textsubscript{2013}/1 GW input)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTM.1</td>
<td>Durban Methanol Plant</td>
<td>Sasolburg, South Africa</td>
<td>140 000</td>
<td>0.021</td>
<td>1998</td>
<td>110</td>
<td>[48][80][81]</td>
</tr>
<tr>
<td>CTM.2</td>
<td>Air Products Kingsport Methanol Plant</td>
<td>USA, Kingsport, Tennessee</td>
<td>96 000</td>
<td>0.21</td>
<td>1997</td>
<td>1495</td>
<td>[82][83]</td>
</tr>
<tr>
<td>CTM.3</td>
<td>Henan Kaxiang Complex</td>
<td>Yima, Henan, China</td>
<td>400 000</td>
<td>0.26</td>
<td>2008</td>
<td>510</td>
<td>[84][85][86][87]</td>
</tr>
<tr>
<td>CTM.4</td>
<td>Dongneng Chemical</td>
<td>Hulunbeier, Inner Mongolia, China</td>
<td>200 000</td>
<td>0.15</td>
<td>2008</td>
<td>490</td>
<td>[53][88]</td>
</tr>
<tr>
<td>CTM.5</td>
<td>Sinopec, Puyang Chemical Plant</td>
<td>Puyang, Henan, China</td>
<td>600 000</td>
<td>0.24</td>
<td>2008</td>
<td>355</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.6</td>
<td>Jinye Group</td>
<td>Gujiao, Shanxi, China</td>
<td>300 000</td>
<td>0.15</td>
<td>2009</td>
<td>350</td>
<td>[53][89]</td>
</tr>
<tr>
<td>CTM.7</td>
<td>Jiangsu Sopo Group</td>
<td>Zhenjiang, China</td>
<td>540 000</td>
<td>0.33</td>
<td>2009</td>
<td>510</td>
<td>[90]</td>
</tr>
<tr>
<td>CTM.8</td>
<td>Shanxi Qinpeng Coal Science Development Co., Ltd,</td>
<td>Yangcheng County, Jincheng, Shanxi, China</td>
<td>200 000</td>
<td>0.31</td>
<td>2009</td>
<td>960</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.9</td>
<td>Xinsheng Coal Chemical Corp</td>
<td>Yuncheng, Shanxi, China</td>
<td>200 000</td>
<td>0.085</td>
<td>2009</td>
<td>260</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.10</td>
<td>Asia New-Energy (Xinyang) Holdings Pte, Ltd</td>
<td>Xinyang, Henan, China</td>
<td>300 000</td>
<td>0.46</td>
<td>2009</td>
<td>1080</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.11</td>
<td>China Gas/Shanxi Tiancheng Dayang</td>
<td>Fenyang, Shanxi, China</td>
<td>400 000</td>
<td>0.431</td>
<td>2010</td>
<td>800</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.12</td>
<td>China Oceanwide Holdings Group</td>
<td>Baotou, Inner Mongolia, China</td>
<td>1 800 000</td>
<td>3.7</td>
<td>2010</td>
<td>2410</td>
<td>[53][91][92][93][94]</td>
</tr>
<tr>
<td>CTM.13</td>
<td>Jingde Energy & Chemicals Co., Ltd</td>
<td>Xingyi, Guizhou, China</td>
<td>600 000</td>
<td>0.54</td>
<td>2010</td>
<td>760</td>
<td>[53][95]</td>
</tr>
<tr>
<td>CTM.14</td>
<td>Datang International Power Generation Co., Ltd</td>
<td>Duolun County, Inner Mongolia</td>
<td>1 680 000</td>
<td>2.97</td>
<td>2010</td>
<td>2030</td>
<td>[53][96][97]</td>
</tr>
<tr>
<td>CTM.15</td>
<td>SES/Golden Concord Energy</td>
<td>Xilinguole, Inner Mongolia,China</td>
<td>225 000</td>
<td>0.12</td>
<td>2010</td>
<td>335</td>
<td>[53][98]</td>
</tr>
<tr>
<td>CTM.16</td>
<td>Shaanxi Provincial Investment Group Co,</td>
<td>Xianyang, Shaanxi, China</td>
<td>600 000</td>
<td>0.44</td>
<td>2010</td>
<td>620</td>
<td>[53][99][100][101]</td>
</tr>
<tr>
<td>CTM.17</td>
<td>Shenhua Group</td>
<td>Baotou, Inner Mongolia, China</td>
<td>1 800 000</td>
<td>2.8</td>
<td>2010</td>
<td>1820</td>
<td>[53][58][97][102][103][104][105]</td>
</tr>
</tbody>
</table>
Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants (continued).

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (ton/year)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD/1 GWinput)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTM.18</td>
<td>Shenhua Ningmei Group</td>
<td>NingDong, Ningxia, China</td>
<td>1,670,000</td>
<td>2.8</td>
<td>2010</td>
<td>1920</td>
<td>[53][58][97][106][107][109][110]</td>
</tr>
<tr>
<td>CTM.19</td>
<td>Xishan Coal Electricity Group/Shilin Chemical</td>
<td>Ordos, Inner Mongolia, China</td>
<td>300,000</td>
<td>0.19</td>
<td>2010</td>
<td>430</td>
<td>[53][111]</td>
</tr>
<tr>
<td>CTM.20</td>
<td>Wei-he Coal Chemical Group</td>
<td>Weinan, Shaanxi, China</td>
<td>400,000</td>
<td>0.53</td>
<td>2010</td>
<td>990</td>
<td>[53][112][113]</td>
</tr>
<tr>
<td>CTM.21</td>
<td>Shenhua Ningmei Group</td>
<td>NingDong, Ningxia, China</td>
<td>600,000</td>
<td>0.41</td>
<td>2010</td>
<td>580</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.22</td>
<td>Huating Zhongxu Coal Chemical Corp.</td>
<td>Huating, Gansu, China</td>
<td>600,000</td>
<td>0.44</td>
<td>2010</td>
<td>620</td>
<td>[53][114][115][116][117]</td>
</tr>
<tr>
<td>CTM.23</td>
<td>Shaanxi Yanchang Petrochemical Xinghua Company</td>
<td>Xingping, Shaanxi, China</td>
<td>300,000</td>
<td>0.75</td>
<td>2011</td>
<td>1670</td>
<td>[53][118]</td>
</tr>
<tr>
<td>CTM.24</td>
<td>Guizhou Jinyuan Group / Chitianhua Group</td>
<td>Tongzi, Guizhou, China</td>
<td>300,000</td>
<td>0.65</td>
<td>2012</td>
<td>1410</td>
<td>[53][119][120][121]</td>
</tr>
<tr>
<td>CTM.25</td>
<td>Fengfeng Group</td>
<td>Handan, Hebei, China</td>
<td>1,000,000</td>
<td>2.61</td>
<td>2008</td>
<td>2700</td>
<td>[53][122]</td>
</tr>
<tr>
<td>CTM.26</td>
<td>Chongqing Wansheng Coal Chemical Co., Ltd.</td>
<td>Chongqing, China</td>
<td>300,000</td>
<td>0.44</td>
<td>2013</td>
<td>930</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.27</td>
<td>Bohai Chemical Industry Group Corporation</td>
<td>Tianjin, China</td>
<td>500,000</td>
<td>1.93</td>
<td>2014-15</td>
<td>2850</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.28</td>
<td>Chia Tai Energy Chemical Group/Shaanxi Coal Chemical Group/Shaanxi Provincial Investment Group/Shaanxi Xinxing Coal Chemical</td>
<td>Yulin, Shaanxi, China</td>
<td>1,800,000</td>
<td>3.19</td>
<td>-</td>
<td>1920</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.29</td>
<td>Chongqing Kabeile Chemicals</td>
<td>Chongqing, China</td>
<td>850,000</td>
<td>0.39</td>
<td>2012</td>
<td>410</td>
<td>[53][123][124]</td>
</tr>
<tr>
<td>CTM.30</td>
<td>Daban Coal Chemical Corp.</td>
<td>Chifeng, Inner Mongolia, China</td>
<td>300,000</td>
<td>0.97</td>
<td>2012</td>
<td>2100</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.31</td>
<td>East Hope Group</td>
<td>Wansheng, Chongqing, China</td>
<td>200,000</td>
<td>0.43</td>
<td>2010</td>
<td>1300</td>
<td>[53][125][126][127]</td>
</tr>
<tr>
<td>CTM.32</td>
<td>Guizhou Shuicheng Coal Mining (Group) Co., Ltd</td>
<td>Liupanshui, Guizhou, China</td>
<td>200,000</td>
<td>0.26</td>
<td>2011</td>
<td>770</td>
<td>[53][128][129][130]</td>
</tr>
</tbody>
</table>
Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants (continued).

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (ton/year)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD2013 / 1 GW input)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTM.33</td>
<td>Hangtian Huayuan Chemicals Corp.</td>
<td>Shuangyashan, Heilongjiang, China</td>
<td>300 000</td>
<td>0.24</td>
<td>2011</td>
<td>530</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.34</td>
<td>Hemei Group</td>
<td>Hebi, Henan, China</td>
<td>600 000</td>
<td>0.58</td>
<td>2010</td>
<td>815</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.35</td>
<td>Huaneng Hulunbeier Energy Development Co Ltd.</td>
<td>Manzhouli, Inner Mongolia, China</td>
<td>600 000</td>
<td>0.67</td>
<td>2010</td>
<td>940</td>
<td>[53][131]</td>
</tr>
<tr>
<td>CTM.36</td>
<td>Huayi Group/Yili Resources</td>
<td>Ordos, Inner Mongolia, China</td>
<td>1 200 000</td>
<td>0.24</td>
<td>2011</td>
<td>200</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.37</td>
<td>Inner Mongolia Donghua Energy Co., Ltd.</td>
<td>Ordos, Inner Mongolia, China</td>
<td>600 000</td>
<td>0.57</td>
<td>-</td>
<td>740</td>
<td>[53][132][133]</td>
</tr>
<tr>
<td>CTM.38</td>
<td>Jizhong Energy Fengfeng Group/Luneng Group</td>
<td>Xilinguole, Inner Mongolia, China</td>
<td>1 200 000</td>
<td>4.21</td>
<td>-</td>
<td>3370</td>
<td>[53][134][135]</td>
</tr>
<tr>
<td>CTM.39</td>
<td>Liye Tianfu Energy Co., Ltd.</td>
<td>Shihezi, Xinjiang, China</td>
<td>300 000</td>
<td>0.22</td>
<td>2011</td>
<td>490</td>
<td>[53][136]</td>
</tr>
<tr>
<td>CTM.40</td>
<td>Shanghai Huayi Group, Anhui Huayi Chemicals Co.</td>
<td>Wuwei county, Anhui, China</td>
<td>600 000</td>
<td>1.19</td>
<td>2012</td>
<td>1590</td>
<td>[53][137][138][139]</td>
</tr>
<tr>
<td>CTM.41</td>
<td>Ningxia Baota Petrochemicals/Huadian Power</td>
<td>NingDong, Ningxia, China</td>
<td>600 000</td>
<td>0.33</td>
<td>-</td>
<td>430</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.42</td>
<td>Northwest Energy & Chemicals Co., Ltd.</td>
<td>Ordos, Inner Mongolia, China</td>
<td>300 000</td>
<td>0.98</td>
<td>-</td>
<td>2070</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.43</td>
<td>Pucheng Clean Energy Chemical Co. Ltd.</td>
<td>Weinan, Shaanxi, China</td>
<td>1 800 000</td>
<td>2.92</td>
<td>2013</td>
<td>1760</td>
<td>[53][140][141]</td>
</tr>
<tr>
<td>CTM.44</td>
<td>Shaanxi Yanchang Petroleum Group Yulin Coal</td>
<td>Yulin, Shaanxi, China</td>
<td>600 000</td>
<td>0.86</td>
<td>2011</td>
<td>1180</td>
<td>[53][142]</td>
</tr>
<tr>
<td>CTM.45</td>
<td>Shaanxi Yulin Natural Gas Chemical Industry Co., Ltd.</td>
<td>Yulin, Shaanxi, China</td>
<td>600 000</td>
<td>0.66</td>
<td>2011</td>
<td>900</td>
<td>[53][143]</td>
</tr>
<tr>
<td>CTM.46</td>
<td>Shandong Xinwen Mining Group Co., Ltd.</td>
<td>Xilinguole, Inner Mongolia, China</td>
<td>300 000</td>
<td>0.33</td>
<td>-</td>
<td>700</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.47</td>
<td>Shanxi Huayun Coal Electricity Co., Ltd.</td>
<td>Lvliang, Shanxi, China</td>
<td>600 000</td>
<td>0.86</td>
<td>2012</td>
<td>1150</td>
<td>[53][144]</td>
</tr>
<tr>
<td>CTM.48</td>
<td>Shenhua Group</td>
<td>Hulunbeier, Inner Mongolia, China</td>
<td>1 800 000</td>
<td>2.61</td>
<td>-</td>
<td>1570</td>
<td>[53]</td>
</tr>
</tbody>
</table>
Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants (continued).

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (ton/year)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD\textsubscript{2013}/1 GW\textsubscript{input})</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTM.49</td>
<td>Shenhua Group</td>
<td>Yulin, Shaanxi, China</td>
<td>1 800 000</td>
<td>1.42</td>
<td>-</td>
<td>855</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.50</td>
<td>Town Star Industry</td>
<td>Linfen, Shanxi, China</td>
<td>200 000</td>
<td>0.09</td>
<td>-</td>
<td>250</td>
<td>[53][145]</td>
</tr>
<tr>
<td>CTM.51</td>
<td>Shenhua Group</td>
<td>Urad Middle Banner, Inner Mongolia, China</td>
<td>480 000</td>
<td>1.53</td>
<td>2012-2013</td>
<td>2320</td>
<td>[146]</td>
</tr>
<tr>
<td>CTM.52</td>
<td>Xinjiang Guanghui Industry Co., Ltd.</td>
<td>Yiwu County, Xinjiang, China</td>
<td>1 200 000</td>
<td>1.81</td>
<td>2011</td>
<td>1520</td>
<td>[53][147][148][149]</td>
</tr>
<tr>
<td>CTM.53</td>
<td>Yongmei Zhongxin Chemical Corp.</td>
<td>Xinxiang, Henan, China</td>
<td>250 000</td>
<td>0.49</td>
<td>2011</td>
<td>1240</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.54</td>
<td>Yunnan Pioneer Chemical Co., Ltd.</td>
<td>Xundian County, Kunming, China</td>
<td>500 000</td>
<td>0.735</td>
<td>2012</td>
<td>1110</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.55</td>
<td>Zhongtian Hechuang Energy Co., Ltd.</td>
<td>Ordos, Inner Mongolia, China</td>
<td>4 200 000</td>
<td>7.02</td>
<td>2012</td>
<td>2400</td>
<td>[53]</td>
</tr>
<tr>
<td>CTM.56</td>
<td>Yankuang Group/ Xinjiang Energy & Chemical Corp.</td>
<td>Urumqi, Xinjiang, China</td>
<td>300 000</td>
<td>0.82</td>
<td>2011</td>
<td>1820</td>
<td>[53]</td>
</tr>
</tbody>
</table>
Table 4: Performance and cost data of reference coal-to-SNG (CSNG) plants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Plant output (bcm/y)</th>
<th>Plant output (GW)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD/year)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSNG.1</td>
<td>Great Plains Synfuels plant</td>
<td>North Dakota, USA</td>
<td>1.53</td>
<td>1.70</td>
<td>2.1</td>
<td>1984</td>
<td>2160</td>
<td>[6][150][151]</td>
</tr>
<tr>
<td>CSNG.2</td>
<td>CPIC / Shandong Xinwen Mining Group</td>
<td>Yili, Xinjiang, China</td>
<td>6</td>
<td>6.66</td>
<td>4.41</td>
<td>2014</td>
<td>800</td>
<td>[53][97][151][152]</td>
</tr>
<tr>
<td>CSNG.3</td>
<td>Datang Energy Chemicals Corp.</td>
<td>Fuxin, Liaoning, China</td>
<td>4</td>
<td>4.44</td>
<td>4.02</td>
<td>2013</td>
<td>990</td>
<td>[53][151][153]</td>
</tr>
<tr>
<td>CSNG.4</td>
<td>Datang Group/ Beijing Gas Group/Tianjing Jinneng</td>
<td>Chifeng, Inner Mongolia, China</td>
<td>4</td>
<td>4.44</td>
<td>4.2</td>
<td>2012</td>
<td>1060</td>
<td>[53][151][154]</td>
</tr>
<tr>
<td>CSNG.5</td>
<td>Datang International Power Generation Co., Ltd.</td>
<td>Kesheketeng Qi, Inner Mongolia, China</td>
<td>4</td>
<td>4.44</td>
<td>3.76</td>
<td>2012</td>
<td>950</td>
<td>[53][151][154]</td>
</tr>
<tr>
<td>CSNG.6</td>
<td>Huineng Coal Chemical Co., Ltd.</td>
<td>Ordos, Inner Mongolia, China</td>
<td>2</td>
<td>2.22</td>
<td>2.21</td>
<td>2013</td>
<td>880</td>
<td>[53][151][154]</td>
</tr>
<tr>
<td>CSNG.7</td>
<td>Shenhua Group Co., Ltd.</td>
<td>Ordos, Inner Mongolia, China</td>
<td>2</td>
<td>2.22</td>
<td>2.29</td>
<td>2014</td>
<td>890</td>
<td>[53][154]</td>
</tr>
<tr>
<td>CSNG.8</td>
<td>Xinjiang Guanghui Industry Co., Ltd.</td>
<td>Yiwu county, Xinjiang, China</td>
<td>0.5</td>
<td>0.55</td>
<td>1.47</td>
<td>2011</td>
<td>1640</td>
<td>[53][148][155][156]</td>
</tr>
<tr>
<td>CSNG.9</td>
<td>CPIC</td>
<td>Yili, Xinjiang, China</td>
<td>6</td>
<td>6.66</td>
<td>4.57</td>
<td>2012</td>
<td>870</td>
<td>[53][151]</td>
</tr>
<tr>
<td>CSNG.10</td>
<td>China Huaneng Group</td>
<td>Changji, Xinjiang, China</td>
<td>1.3</td>
<td>1.44</td>
<td>1.12</td>
<td>2013</td>
<td>610</td>
<td>[53][148]</td>
</tr>
<tr>
<td>CSNG.11</td>
<td>Yili Xintian Coal Chemical Co., Ltd.</td>
<td>Yili, Xinjiang, China</td>
<td>2</td>
<td>2.22</td>
<td>1.96</td>
<td>2013</td>
<td>780</td>
<td>[152]</td>
</tr>
<tr>
<td>CSNG.12</td>
<td>China Guodian Corporation</td>
<td>Xing’an, Inner Mongolia, China</td>
<td>2</td>
<td>2.22</td>
<td>2.12</td>
<td>2014</td>
<td>830</td>
<td>[53][151]</td>
</tr>
<tr>
<td>CSNG.13</td>
<td>Qinghua Group</td>
<td>Yining County, Yili, Xinjiang, China</td>
<td>1.3</td>
<td>1.44</td>
<td>0.82</td>
<td>2012</td>
<td>460</td>
<td>[53][152][156]</td>
</tr>
<tr>
<td>CSNG.14</td>
<td>Shendong Tinanlong Group</td>
<td>Changji, Xinjiang, China</td>
<td>1.3</td>
<td>1.44</td>
<td>1.12</td>
<td>2013</td>
<td>610</td>
<td>[53]</td>
</tr>
<tr>
<td>CSNG.15</td>
<td>China Huadian Corporation</td>
<td>Changji, Xinjiang, China</td>
<td>4</td>
<td>4.44</td>
<td>4</td>
<td>-</td>
<td>985</td>
<td>[53]</td>
</tr>
<tr>
<td>CSNG.16</td>
<td>Xinjiang Guanghui Group</td>
<td>Aletai, Xinjiang, China</td>
<td>4</td>
<td>4.44</td>
<td>3.27</td>
<td>2013</td>
<td>810</td>
<td>[53]</td>
</tr>
<tr>
<td>CSNG.17</td>
<td>CNOOC, Datong Coal Mine Group Company</td>
<td>Datong, Shanxi, China</td>
<td>4</td>
<td>4.44</td>
<td>4.9</td>
<td>2013</td>
<td>1210</td>
<td>[53][151][157]</td>
</tr>
</tbody>
</table>
Table 5: Performance and cost data of reference Integrated Gasification Combined Cycle (IGCC) plants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Project name</th>
<th>Location</th>
<th>Power output (MW)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>TCI (million USD_{2013}/1 GW_{input})</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCC.1</td>
<td>Nuon Buggenum</td>
<td>Haelen, Limburg, The Netherlands</td>
<td>253</td>
<td>0.443</td>
<td>1994</td>
<td>1060</td>
<td>[158][159][160][161][162][163][164][165][166]</td>
</tr>
<tr>
<td>IGCC.2</td>
<td>Wabash River Power Station</td>
<td>Terre Haute, Indiana, USA</td>
<td>262</td>
<td>0.438</td>
<td>1995</td>
<td>940</td>
<td>[158][159][161][165][166][167][168][169]</td>
</tr>
<tr>
<td>IGCC.3</td>
<td>Sokolovska Uhelna AS, Vresova IGCC</td>
<td>Vresova, Czech Republic</td>
<td>351</td>
<td>0.440</td>
<td>1996</td>
<td>800</td>
<td>[158][159][161][165][166][170][171][172][173][174]</td>
</tr>
<tr>
<td>IGCC.4</td>
<td>Tampa Electric Company, Polk Power Station</td>
<td>Tampa, Florida, USA</td>
<td>250</td>
<td>0.448</td>
<td>1996</td>
<td>990</td>
<td>[158][159][161][165][166][175][176][177]</td>
</tr>
<tr>
<td>IGCC.5</td>
<td>Elcogas</td>
<td>Puertoilano, Ciudad Real, Spain</td>
<td>310</td>
<td>0.996</td>
<td>1998</td>
<td>1820</td>
<td>[158][159][161][165][166][178][180][181]</td>
</tr>
<tr>
<td>IGCC.6</td>
<td>Duke Energy</td>
<td>Edwardsport, Indiana, USA</td>
<td>618</td>
<td>3.55</td>
<td>2013</td>
<td>2620</td>
<td>[182][183][184][185][186][187][188][189][190]</td>
</tr>
<tr>
<td>IGCC.7</td>
<td>Southern Company Services / Mississippi</td>
<td>Kemper County, Mississippi, USA</td>
<td>582</td>
<td>2.9</td>
<td>2014</td>
<td>2170</td>
<td>[158][159][161]</td>
</tr>
</tbody>
</table>
Results of updated specific costs in terms of USD$_{2013}$/kW for a 1 GW input plant are shown in Figure 4 to Figure 8.

Figure 4: Specific TCI costs for gas-to-liquids (GTL) plants translated to 2013-USD and normalized to 1 GW input scale.

In Figure 4 it can be observed that plants GTL.5 (Shell’s Pearl), GTL.7 (Sasol’s Escravos), and GTL.9 (Sasol’s Louisiana), highlighted with red stripes, show dramatically higher investment costs than other plants such as Mossel Bay (GTL.1), Shell’s Bintulu (GTL.2) or Shell’s Oryx (GTL.3). Despite the high interest and recent developments in GTL industry, progress has been restrained by the huge cost of building GTL plants, due to cost overruns, as well as by the swing in the price of oil [22][37]. Even though it has been reported that a 35000 bbl/day GTL plant can cost about 1 billion USD [37], reality has shown cost escalations in some commercial plants. It is generally accepted that such escalation is an over-reaction forced by constraints in materials availability and engineering capacity [191]. GTL plants have to compete for scarce engineering talent and raw materials such as high-strength corrosion resistant steels with the enormous number of LNG projects launched over the last ten years. Engineering and construction costs for oil and gas exploration and production projects rose 41% between early 2006 and early 2009. The result has been a high pressure on the relatively scarce engineering companies and suppliers capable of delivering advanced GTL plants on this sort of scale [37]. It is expected that escalations will re-dress itself in the next few years, but it is unlikely to return to the low investment costs such as those at the Sasol Oryx project in 2002 [191].

In 2003, before construction began, the project cost of the Shell’s Pearl Project (GTL.4 and GTL.5 in Table 1) was estimated at 5 billion USD. However, the real costs of this project are much higher, up to 18-19 billion USD, which is about four times the original estimate. Chevron and Sasol’s Escravos plant (GTL.6 and GTL.7 in Table 1) has seen even worse cost inflation, and is years behind schedule. This 34000 bbl/day plant was initially budgeted at 3 billion USD. the cost of project had escalated to 8.4 billion USD. As for the
case of the Louisiana GTL project (GTL.9 in Table 1), cost has already jumped up to 16 billion USD from the initial estimate of 8 billion USD. The high price tag of GTL plants is largely due to capital costs of building GTL facilities. Even with the 2 billion USD tax credits and other incentives from the state of Louisiana, the final cost of the project may be higher [192].

Figure 5: Specific TCI costs for coal-to-liquids (CTL) plants translated to 2013-USD and normalized to 1 GW input scale.

Figure 6: Specific TCI costs for coal-to-methanol (CTM) plants translated to 2013-USD and normalized to 1 GW input scale.
It is worth noticing in Figure 7 that there are two specific cases far from the average. In these cases (corresponding to the Great Plains plant and the Xinjiang Guanghui facilities, respectively), the higher investment costs might be explained by the co-production of other chemicals (see Section D.3 in Appendix D for the description of the Great Plants SNG facility).

Figure 7: Specific TCI costs for coal-to-SNG (CSNG) plants translated to 2013-USD and normalized to 1 GW input scale.

Figure 8: Specific TCI costs for Integrated Gasification Combined Cycle (IGCC) plants translated to 2013-USD and normalized to 1 GW input scale.
The average values of the specific TCI costs in terms of USD\textsubscript{2013}/kW for a 1 GW thermal input plant are summarized in Table 6 and Figure 9. As can be seen, GTL is the technology with highest average specific investment costs (~1800 USD\textsubscript{2013}/kW input) and highest deviation of values. Moreover, literature values for GTL investment costs are significantly lower than the actual ones. The reason of the discrepancy and the high dispersion of data values is the effect of cost escalations, discussed previously in this section. On the contrary, coal-to-SNG technology shows the lowest average (~ 970 USD\textsubscript{2013}/kW input) and standard deviation values. In this study, the average values will be used, not excluding any of the input values. This is assumed to be the most reliable estimation for the estimation of the TCI of a large scale bioSNG plant.

Table 6: Summary and comparison of average values of TCI of reference plants.

<table>
<thead>
<tr>
<th>Technology</th>
<th>TCI (USD\textsubscript{2013}/kW\textsubscript{input})</th>
<th>Comparison with literature references TCI (USD\textsubscript{2013}/kW\textsubscript{input})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL</td>
<td>1770</td>
<td>551.4 [193]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>627.5 [194]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>428.5 [22]</td>
</tr>
<tr>
<td>CTL</td>
<td>1220</td>
<td>1286 [195]</td>
</tr>
<tr>
<td>CTM</td>
<td>1160</td>
<td>-</td>
</tr>
<tr>
<td>CSNG</td>
<td>970</td>
<td>-</td>
</tr>
<tr>
<td>IGCC</td>
<td>1490</td>
<td>1184 – 1714 [196]</td>
</tr>
</tbody>
</table>

Values shown are the input for the next step in the cost estimation of a large-scale bioSNG plant, analysed in Section 3 of this document.

Figure 9: Summary of average values and standard deviation for the specific TCI of reference plants translated to 2013-USD and normalized to 1 GW input scale.
3

Normalized equipment cost of a bioSNG plant

The cost-share of each main process block of the reference plants is compared with the main process blocks (e.g. gasification island, or gas cleaning) of a bioSNG plant. As mentioned in the introduction, the reference plants are GTL, CTL, CTM, CSNG, and IGCC. The difference in the level of technical complexity gives an estimation of the cost difference in these process blocks.

For each reference plant, the system layout is briefly described and a simplified process flow diagram is provided. The differences in terms of components and equipment cost-share of these components are given in a separate table. All equipment or Inside Battery Limits (ISBL) costs of the reference plants have been normalized at 100 units. The division of cost shares of the different equipment is different for each case. This analysis results in the relative equipment cost for a bioSNG plant.

In order to perform a rigorous, consistent analysis, the following units have been considered in each one of the cases studied:

A. Air separation unit.
B. Gasifier island. This includes feedstock pre-treatment and feeding, gasifier and syngas cooling.
C. Syngas cleaning and conditioning (tar removal, acid gas removal, adjustment of composition, compression).
D. Synthesis and product upgrading. This unit is not applicable to IGCC plants.
E. Steam plant / power block (only applicable to IGCC plants). Also including plant balance.

The configuration of biomass-to-SNG used in this work for the analysis, based on MILENA indirect gasification and OLGA tar removal, has been described in section 1.5 of this document.
3.1 Gas-to liquids vs. biomass-to-SNG

A simplified layout of a GTL plant is shown in Figure 10. More details on the ORYX GTL plant as an example of the technology can be found in Section D.1 of Appendix D.

Figure 10: Schematic layout of a gas-to-Liquids plant

![Diagram of a gas-to-liquids plant]

Table 7 summarizes the cost-share differences of a GTL plant with a bioSNG plant.

3.2 Coal-to-liquids vs. biomass-to-SNG

For the analysis presented in this work, CTL process based on gasification of the solid feedstock and subsequent Fischer-Tropsch synthesis has been considered. Figure 11 plots a simplified configuration of a CTL process.

Figure 11: Simplified layout of a coal-to-liquids plant.

![Diagram of a coal-to-liquids plant]

In principle, coal-to-liquid plants show a number of similar features as compared to SNG production. Both processes use gasification of a solid material, contain extensive cleaning of the syngas produced (e.g. sulphur, CO₂), and include a catalytic process (methanation vs. Fischer Tropsch) in the end. More details on an example of CTL facility (Sasol Synfuels plant in Secunda, South Africa, see CTL.2 in Table 2) can be found in Appendix D of the document.

Table 8 summarizes the comparison of the distribution of investment costs of a CTL and a bioSNG plant.
Table 7: Comparison of cost distribution of gas-to-liquids and biomass-to-SNG plants.

<table>
<thead>
<tr>
<th>Main equipment blocks</th>
<th>Cost GTL plant [% of ISBL] [21]</th>
<th>Gas-to-liquids vs. biomass-to-SNG</th>
<th>Relative cost of biomass-to-SNG plant [% of ISBL compared to GTL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air separation unit</td>
<td>25</td>
<td>Not required in the bioSNG plant because of the use of indirect gasification.</td>
<td>0</td>
</tr>
</tbody>
</table>
- Natural gas pre-treatment: removal of liquid hydrocarbons, sulphur compounds (H₂S, COS, mercaptans), heavy metals, etc.
- Gasifier: bioSNG concept uses MILENA indirect gasification. GTL uses steam reforming/partial oxidation/autothermal reforming. Partial oxidation and autothermal reforming require the use of oxygen, which imposes more strict requirements to materials. Steam reforming operates at high pressures, and requires of catalysts.
- Operating temperature: MILENA indirect gasification operates at lower temperatures (700-900°C) than partial oxidation (1300-1500°C). This makes the material requirements less stringent, and simplifies the design (less refractory).
- Operating pressure: MILENA indirect gasification operates up to 7 bar (due to limited possible solid circulation). Partial oxidation units can operate at higher pressures (up to 70 bar). Therefore, for the same output, MILENA equipment has a larger size, and is thus more expensive. | 45 |
| C. Syngas cleaning and conditioning | 0 | - BioSNG plant: physical tar removal (OLGA system), HDS, adjustment of H₂/CO ratio via WGS, acid gas removal (e.g. amine scrubbing unit + adsorption bed). More compression requirements and larger equipment size, because of the lower operating pressure of the MILENA gasifier (up to 7 bar).
- GTL plant: Syngas cleaning not required. | 50 |
| D. Synthesis and product upgrading | 43 | - Synthesis: Fischer-Tropsch and methanation reactors operate at similar pressures (20-30 bar) and temperatures ~ 300°C. However, F-T unit adds complex recycler and reformer, which moreover increases flow, and thus equipment size.
- Product upgrading: Complex and costly upgrading of F-T crude. SNG upgrading is relatively easy (adjustment of Wobbe index and pressure). | 25 |

Total ISBL 100 120
Table 8: Comparison of cost distribution of coal-to-liquids and biomass-to-SNG plants.

<table>
<thead>
<tr>
<th>Main equipment blocks</th>
<th>Cost coal-to-liquids plant [% of ISBL] [197][198]</th>
<th>Coal-to-liquids vs. biomass-to-SNG</th>
<th>Relative cost of biomass-to-SNG plant [% of ISBL compared to CTL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air separation unit</td>
<td>10</td>
<td>ASU is not required in the biomass-to-SNG case because of the use of indirect gasification.</td>
<td>0</td>
</tr>
<tr>
<td>B. Gasification island</td>
<td>26</td>
<td>- Pre-treatment and feeding: Grinding and drying of biomass is more costly than for coal (biomass has a relatively high moisture content, and is fibrous). In both cases, lock hoppers are required for pressurized feeding into the gasifier. - Gasifier: biomass-to-SNG concept uses MILENA indirect gasification. CTL uses fixed-bed gasification (Sasol). The former requires the use of oxygen, which poses more strict requirements to materials. - Operating temperature: MILENA indirect gasification operates at lower temperatures (700-900°C) than oxygen-blown gasification. This makes the material requirements less stringent, and simplifies the design (less refractory required). - Operating pressure: MILENA indirect gasification (bioSNG) operates up to 7 bar (due to limited possible solid circulation). Lurgi fixed-bed gasification (CTL) operates at ~ 24 bar. Therefore, for the same output, MILENA equipment has a larger size, and thus more expensive.</td>
<td>45</td>
</tr>
<tr>
<td>C. Syngas cleaning and conditioning</td>
<td>22</td>
<td>- Tar removal: physical tar removal (OLGA system) and recirculation of tar to gasifier in bioSNG plant. Condensation and further processing for extraction of phenol and other products in CTL. - Adjustment of H\textsubscript{2}/CO ratio: similar in both cases (WGS unit). - Acid gas removal: CTL plants use complex, costly physical absorption (e.g. Rectisol) for CO\textsubscript{2} and contaminants removal. Biomass-to-SNG concept might use less costly amine scrubbing unit + adsorption bed for CO\textsubscript{2} and H\textsubscript{2}S removal. - Compression: more compression requirements and larger equipment size in bioSNG plant, because of the lower operating pressure of the MILENA gasifier (up to 7 bar).</td>
<td>45</td>
</tr>
<tr>
<td>D. Synthesis and product upgrading</td>
<td>32</td>
<td>-Synthesis: F-T and methanation reactors operate at similar pressures and temperatures. However, F-T unit adds complex recycler and reformer, which increases flow, and thus equipment size. -Product upgrading of F-T crude requires complex and costly equipment. On the contrary, SNG upgrading is relatively easy (adjustment of Wobbe index, compression).</td>
<td>15</td>
</tr>
<tr>
<td>Total ISBL</td>
<td>100</td>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>
3.3 Coal-to-methanol vs. biomass-to-SNG

Figure 12 shows a simplified configuration of methanol synthesis. The process consists of gasification of coal. Syngas produced is cleaned and conditioned prior to methanol synthesis. Products from synthesis stage are separated and upgraded in order to comply with the product methanol requirements.

Table 9 summarizes the comparison of cost distribution of coal-to-methanol and biomass-to-SNG plants.
Table 9: Comparison of cost distribution of coal-to-methanol and biomass-to-SNG plants.

<table>
<thead>
<tr>
<th>Main equipment blocks</th>
<th>Cost CTM plant [% of ISBL] [197][199]</th>
<th>Coal-to-methanol vs. biomass-to-SNG</th>
<th>Relative cost of bioSNG plant [% of ISBL compared to CTM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air separation unit</td>
<td>20</td>
<td>ASU not required in bioSNG plant because of the use of indirect gasification.</td>
<td>0</td>
</tr>
<tr>
<td>B. Gasification island</td>
<td>31</td>
<td>- Feedstock pre-treatment and feeding: Grinding and drying of biomass is more costly than for coal. In both cases, lock hoppers required for pressurized feeding into the gasifier. - Gasifier: biomass-to-SNG concept uses MILENA indirect gasification. CTM uses fixed-bed or entrained-flow gasification. Both require the use of oxygen, which poses more strict requirements to materials. - Operating temperature: MILENA indirect gasification operates at lower temperatures (700-900°C) than oxygen-blown gasification. This makes material requirements less stringent, and simplifies the design (less refractory / no membrane walls required). - Operating pressure: MILENA indirect gasification operates up to 7 bar (due to limited possible solid circulation). Fixed-bed / entrained-flow gasifiers can operate at much higher pressures, which leads to more compact equipment, and thus to cost savings in construction materials. Therefore, for the same output, MILENA equipment has a larger size, and is thus more expensive.</td>
<td>45</td>
</tr>
<tr>
<td>C. Syngas cleaning and conditioning</td>
<td>27</td>
<td>- Tar removal: physical tar removal (OLGA) and recirculation of tar to gasifier in bioSNG. Condensation and further processing for extraction of phenol and other products in CTL. - Adjustment of H₂/CO: similar (WGS unit). - Acid gas removal: CTL plants use complex, costly physical absorption (e.g. Rectisol) for CO₂ and contaminants removal. Biomass-to-SNG might use less costly amine scrubbing unit + water scrubbing + adsorption bed. Upstream HDS required in the bioSNG concept. - Compression: more compression requirements and larger equipment size in bioSNG plant, because of the lower operating pressure of MILENA (up to 7 bar).</td>
<td>50</td>
</tr>
<tr>
<td>D. Synthesis and product upgrading</td>
<td>22</td>
<td>- Synthesis: Due to the most stringent pressure conditions of methanol synthesis (50-70 bar) and gas recycle, cost of methanol synthesis unit expected to be slightly higher than methanation reactor (~ 30 bar). - Product upgrading: Both upgrading of methanol (distillation), and of SNG (adjustment of Wobbe index, compression) are relatively simple. Therefore, costs are assumed to be in a similar range.</td>
<td>20</td>
</tr>
<tr>
<td>Total ISBL</td>
<td>100</td>
<td></td>
<td>115</td>
</tr>
</tbody>
</table>
3.4 Coal-to-SNG vs. biomass-to-SNG

The coal-to-SNG plant, in principle, can be considered similar to a bioSNG plant. A generic, conventional SNG facility from coal gasification, shown in Figure 13, is composed by the following units:

- Gasifier (the most usual technologies used for large-scale coal gasification are fixed-bed and entrained-flow gasification).
- Cooling and tar removal.
- Sour water-gas shift (WGS) for adjustment of H$_2$/CO ratio.
- Acid gas removal unit (e.g. Rectisol, Selexol).
- Methanation unit.
- SNG conditioning: water and CO$_2$ removal, cooling and compression.

A detailed description of an example of commercial CSNG plant (Great Plains Synfuels, CSNG.1 in Table 4) can be found in Section D.3 of Appendix D of this document.

Figure 13: Simplified configuration of a coal-to-SNG plant.

Comparison analysis is presented in Table 10.
Table 10: Comparison of cost distribution of coal-to-SNG and biomass-to-SNG plants.

<table>
<thead>
<tr>
<th>Main equipment blocks</th>
<th>Cost of CSNG plant [% of ISBL] [197]</th>
<th>Coal-to-SNG vs. biomass-to-SNG</th>
<th>Relative cost of bioSNG plant [% of ISBL compared to CSNG]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air separation unit</td>
<td>11</td>
<td>ASU is not required in the biomass-to-SNG case because of the use of indirect gasification.</td>
<td>0</td>
</tr>
</tbody>
</table>
| B. Gasification island | 31 | - Feedstock pre-treatment: Grinding and drying of biomass is more costly than for coal. In both cases, lock hoppers are required for pressurized feeding.
- Gasifier: biomass-to-SNG concept uses MILENA indirect gasification. CSNG uses fixed-bed or entrained-flow gasification (e.g. Lurgi fixed-bed gasification in the Great Plains Synfuels plant). Both require the use of oxygen, which poses more strict requirements to materials.
- Operating temperature: MILENA indirect gasification operates at lower temperatures (700-900°C) than O2-blown gasification (1200-1500°C). This makes the material requirements less stringent, and simplifies the design (less refractory /no membrane walls required).
- Operating pressure: MILENA indirect gasification operates up to 7 bar (due to limited possible solid circulation). CSNG gasifier operates at ~30 bar (Great Plains plant). Therefore, for the same output, MILENA equipment has a larger size, and thus more expensive. | 45 |
| C. Syngas cleaning and conditioning | 16 | - Tar removal: physical tar removal (OLGA) and tar recirculation to gasifier in bioSNG plant. Tar condensation and separation/recovery of products (e.g. phenol, cresylic acid) in CSNG. The latter option is considered more complex.
- Acid gas removal: coal-to-SNG uses costly physical absorption processes (e.g. Rectisol). Biomass-to-SNG concept might use less costly processes (e.g. water scrubbing + amine scrubbing unit + adsorption bed) for CO2 and H2S removal. BioSNG concept adds HDS prior to acid gas removal.
- Adjustment of H2/CO ratio: similar in both cases (WGS unit).
- Compression: more compression requirements and larger equipment size in bioSNG plant, because of the lower operating pressure of the MILENA gasifier (up to 7 bar). | 45 |
| D. Synthesis and product upgrading | 42 | - Synthesis: Similar technology. Biomass-to-SNG process might be slightly less costly due to the higher CH4 content of syngas, which results in a smaller methanation plant and ideally no gas recycle for temperature control.
- Product upgrading: similar (same specifications for pipeline injection). | 40 |
| **Total ISBL** | **100** | | **130** |
3.5 Integrated gasification combined cycle vs. biomass-to-SNG

Results of the comparison of distribution costs between a reference IGCC plant and a biomass-to-SNG process are summarized in Table 11. More details on an example of commercial IGCC plant (Elcogas, IGCC.5 in Table 5) can be found in Section D.4 of Appendix D.

Table 11: Comparison of cost distribution of IGCC and biomass-to-SNG plants.

<table>
<thead>
<tr>
<th>Main equipment blocks</th>
<th>Cost of IGCC plant [% of ISBL]</th>
<th>IGCC vs. biomass-to-SNG</th>
<th>Relative cost of bioSNG plant [% of ISBL compared to IGCC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air separation unit</td>
<td>12</td>
<td>ASU not required in bioSNG plant (indirect gasification).</td>
<td>0</td>
</tr>
</tbody>
</table>
| B. Gasification island| 26 | - Feedstock pre-treatment: Grinding and drying more costly for biomass than for coal. Lock hoppers required in both cases for pressurized feeding.
- Gasifier: MILENA indirect gasification for bioSNG plant. Entrained-flow gasification in IGCC plant. The latter requires the use of oxygen (more strict material requirements).
- Operating temperature: lower temperatures in MILENA (700-900°C) than entrained-flow gasification (1200-1500°C). Less stringent material requirements and less complex design in bioSNG plant.
- Operating pressure: up to 7 bar in MILENA. ~25-30 bar in IGCC plant. Therefore, MILENA equipment has a larger size and is more expensive. | 40 |
| C. Syngas cleaning and conditioning | 8 | - Tar removal: OLGA tar removal and recirculation of tars to gasifier in bioSNG plant. Tar condensation in IGCC (no products recovery, less complex).
- Acid gas removal: less stringent specifications of syngas for IGCC applications than for synthesis. Therefore, gas cleaning is less severe, and less costly cleaning systems (e.g. amine scrubbing) can be used. BioSNG plant can also use amine scrubbing, but previous HDS is required.
- Adjustment of H₂/CO: not required in IGCC.
- Compression: More compression requirements and larger equipment size in bioSNG due to lower operating pressure of MILENA gasifier. | 40 |
| D. Synthesis and product upgrading | N.A. | BioSNG plant: Methanation at 30 bar and 300°C. SNG upgrading relatively easy. | 30 |
| E. Steam plant / power block | 54 | IGCC plant: steam turbine, heat recovery steam generator (HRSG), and gas turbine. | N.A. |
| Total ISBL | 100 | | 110 |
3.6 Results on normalized equipment cost

Results of the analysis performed in the previous sections of this chapter are summarized in Table 12. Differences between costs of biomass-to-SNG process and reference plants are displayed. As can be seen, based on the analysis proposed in this work, biomass-to-SNG ranges from +5% to +30% compared to the selected commercial reference technologies.

Table 12: Summary of estimated change in equipment cost for a biomass-to-SNG plant compared to reference plants.

<table>
<thead>
<tr>
<th>Reference plant</th>
<th>Estimated cost difference for biomass-to-SNG plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL</td>
<td>+ 20%</td>
</tr>
<tr>
<td>CTL</td>
<td>+ 5%</td>
</tr>
<tr>
<td>CTM</td>
<td>+ 15%</td>
</tr>
<tr>
<td>CSNG</td>
<td>+ 30%</td>
</tr>
<tr>
<td>IGCC</td>
<td>+ 10%</td>
</tr>
</tbody>
</table>
Total Capital Investment for a bioSNG plant

In Section 2, an average total capital investment (TCI) for each reference technology based on costs of commercial plants was determined. In this chapter, technical differences between processes quantified in Section 3 are applied to the TCI estimated. Results are summarized in Table 13.

Table 13: Average TCI of a 1 GW biomass-to-SNG plant.

<table>
<thead>
<tr>
<th>Reference plant</th>
<th>Average TCI (USD\textsubscript{2013}/kW\textsubscript{input})</th>
<th>Estimated cost difference respect to bioSNG plant</th>
<th>Average TCI of bioSNG plant (USD\textsubscript{2013}/kW\textsubscript{input})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL</td>
<td>1770</td>
<td>+ 20%</td>
<td>2120</td>
</tr>
<tr>
<td>CTL</td>
<td>1220</td>
<td>+ 5%</td>
<td>1280</td>
</tr>
<tr>
<td>CTM</td>
<td>1160</td>
<td>+ 15%</td>
<td>1330</td>
</tr>
<tr>
<td>CSNG</td>
<td>970</td>
<td>+ 30%</td>
<td>1260</td>
</tr>
<tr>
<td>IGCC</td>
<td>1490</td>
<td>+ 10%</td>
<td>1640</td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
<td></td>
<td>1530</td>
</tr>
</tbody>
</table>

Therefore, after accounting for inflation rates and differences in technologies, the average TCI for a biomass-to-SNG plant results in \textasciitilde 1530 USD\textsubscript{2013}/kW\textsubscript{input}. This is the overall specific cost of a large-scale (1 GW thermal input) bioSNG plant.

Although the estimated TCI value is based on data from large-scale commercial operational and under construction plants, the value obtained must be extrapolated in order to take into account learning effects.

The value of 1530 USD\textsubscript{2013}/kW input is therefore the TCI of a 1 GW bioSNG plant that would be the first or second of its kind. Because parts of this process are not yet upscaled to 1 GW, this 1st-2nd of a kind bioSNG plant can only be built in about 10 years from now. The question is which value of TCI is realistic for a bioSNG plant on the longer
term. For this, it is assumed that 10 GW capacity is installed cumulatively, that is, after copying a 1 GW plant ten times. This may be the case in 20-25 years from now, approximately in 2030.

Learning usually occurs at two levels: 1) during the construction of the plant and 2) during operation of the plant. It is important that lessons learned are incorporated in the next plants. This could lead to capital cost-reductions and increased operational hours and less downtime of the plant. An important condition is that subsequent plants are constructed and/or operated by the same company. Too much time between construction could result in an effect called “forgetting by not doing” instead of “learning by doing”.

The progress and learning rates strongly depend on the type of technology [201]. Since biomass-to-SNG technology is relatively new, a learning rate of 10% has been assumed in this work. By applying the equations presented in Section A.5 of Appendix A, it can be checked that increasing the capacity from 1 to 10 GW would reduce the costs with 30%. So, the TCI for a complete biomass-to-SNG facility results in ~1100 USD\textsubscript{2013}/kW\textsubscript{input} after 10 GW of cumulative installed plants.
BioSNG cost price

In this chapter the cost price of bioSNG is calculated for large-scale production. This price is based on the capital cost for a large bioSNG plant which has been estimated in Sections 2-4.

5.1 Assumptions

A capital cost of ~1100 USD\textsubscript{2013}/kW\textsubscript{input} has been used for the calculation of the bioSNG price. The technology selected in this work for SNG production from biomass is briefly described in section 1.5 of this document. A 1 GW input biomass-to-SNG plant is assumed. This plant produces about 21 million GJ or 655 million Nm3 of Groningen-quality SNG per year. Table 14 displays the assumptions used in the economic analysis for the calculation of the bioSNG price.

<table>
<thead>
<tr>
<th>Plant parameters</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant size (input)</td>
<td>1</td>
<td>GW</td>
</tr>
<tr>
<td>Specific plant cost</td>
<td>1100</td>
<td>USD\textsubscript{2013}/kW \text{input}</td>
</tr>
<tr>
<td>Net electricity consumption</td>
<td>2%</td>
<td>of thermal input</td>
</tr>
<tr>
<td>Plant efficiency biomass-to-SNG</td>
<td>70%</td>
<td>(LHV based)</td>
</tr>
<tr>
<td>Plant availability</td>
<td>90%</td>
<td>of the year [202]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economic parameters</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O&M cost</td>
<td>3</td>
<td>% of the TCI per year [202]</td>
</tr>
<tr>
<td>Other fixed cost</td>
<td>2</td>
<td>% of the TCI per year</td>
</tr>
<tr>
<td>Interest</td>
<td>5</td>
<td>% per year</td>
</tr>
<tr>
<td>Capital charges</td>
<td>10</td>
<td>years, annuity</td>
</tr>
<tr>
<td>Cost of biomass</td>
<td>See Table 15</td>
<td>USD\textsubscript{2013}/GJ</td>
</tr>
<tr>
<td>Cost of electricity</td>
<td>0.09</td>
<td>USD\textsubscript{2013}/kWh [203]</td>
</tr>
</tbody>
</table>
The price of bioSNG is expected to dramatically depend on the cost of biomass feedstock. Table 15 shows the price of biomass feedstock in different geographical areas.

Table 15: Price of biomass feedstocks in different geographic areas [203].

<table>
<thead>
<tr>
<th>Region</th>
<th>Biomass feedstock</th>
<th>Cost (USD/ton)</th>
<th>Cost (USD/GJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Industrial wood pellets (CIF Rotterdam)</td>
<td>166</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>Wood chips from local energy crops</td>
<td>60 - 94</td>
<td>5.2 – 8.2</td>
</tr>
<tr>
<td></td>
<td>Wood chips from Scandinavian forest residues to continental Europe</td>
<td>98 - 115</td>
<td>8.6 – 10.1</td>
</tr>
<tr>
<td></td>
<td>Local agricultural residues</td>
<td>55 - 68</td>
<td>4.8 – 6.0</td>
</tr>
<tr>
<td></td>
<td>Imported pellets from United States to continental Europe</td>
<td>157 - 182</td>
<td>9.3 – 10.8</td>
</tr>
<tr>
<td>United States</td>
<td>Energy chips / residuals North-East</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Forest residues</td>
<td>15-30</td>
<td>1.3 – 2.6</td>
</tr>
<tr>
<td></td>
<td>Wood waste</td>
<td>10-50</td>
<td>0.3 – 2.5</td>
</tr>
<tr>
<td></td>
<td>Agricultural residues (corn stover and straw)</td>
<td>20-50</td>
<td>1.7 – 4.3</td>
</tr>
<tr>
<td></td>
<td>Energy crops (poplar, willow and switchgrass)</td>
<td>39-60</td>
<td>4.5 – 6.9</td>
</tr>
<tr>
<td>Brazil</td>
<td>Wood chips</td>
<td>71</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>Bagasse</td>
<td>11 - 13</td>
<td>1.3 – 2.3</td>
</tr>
<tr>
<td>India</td>
<td>Rice Husk</td>
<td>22 - 30</td>
<td>0.7 – 2.3</td>
</tr>
<tr>
<td></td>
<td>Bagasse</td>
<td>12 - 14</td>
<td>1.4 – 2.5</td>
</tr>
</tbody>
</table>

For the determination of the cost price of bioSNG, three cases have been considered in this work:

- **Case 1.** The plant is located in Europe (e.g. in the Rotterdam area, the Netherlands), and uses wood chips shipped from Scandinavia/Baltic area as feedstock.
- **Case 2.** The plant is located in United States, and uses wood chips as feedstock.
- **Case 3.** The bioSNG facility uses cheap agricultural residues (e.g. Brazil or India).

In all cases, it is assumed that the values include the transportation costs to the plant.

5.2 Results

Results obtained are summarized in Table 16. The cost price of bioSNG ranges between **14-24 USD2013/GJ**, and strongly depends on the biomass feedstock, and therefore, on the plant location. This price is equivalent to ~ **0.45–0.77 USD2013/Nm³**, based on the LHV of Groningen gas (32 MJ/Nm³). Figure 14 compares the distribution of costs of bioSNG production for cases 1 and 3. Biomass price amounts to 54% of total costs in case the bioSNG plant is located in Europe. This fraction is only 21% in case inexpensive agricultural residues are available.
Table 16: Summary of results of bioSNG cost price produced in a 1 GW input plant.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Biomass feedstock</th>
<th>Cost of biomass* (USD2012/GJ)</th>
<th>Cost of bioSNG (USD2013/GJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>Wood chips</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>Case 2</td>
<td>Wood chips</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Case 3</td>
<td>Agricultural residues</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>

* Cost at plant gate.

Even though it has been shown that the price of bioSNG is largely determined by the price of biomass feedstock, this is not the only factor that must be taken into account in the decision of a bioSNG location. Other economic/political factors must also be borne in mind. BioSNG must compete with fossil natural gas, or even also with SNG produced from coal. In this sense, the recent changes in the energy scenario, particularly concerning the development of non-conventional natural gas production, affect decisively on the investment decisions of production of bioSNG. For additional information, Appendix B briefly reviews the status of some coal-based technologies in the United States and China. Figure 15 displays the map of global natural gas trade in 2013. As can be seen, bioSNG plants only make sense in areas in which the demand of natural gas is higher than the production. Therefore, in principle, Europe and the Asia-Pacific region (China, Korea, Japan) are the geographical areas in which bioSNG production might be in principle most attractive. China has recently focused on SNG production from autochthonous coal (see Section B.1 in Appendix B), and therefore, production of SNG from biomass might not be economically competitive.
Looking at bioSNG as biofuel, projection of price of biofuels up to 2050 can be found in reference [206], whereas estimations of natural gas prices up to 2035 are reported in reference [207]. Prices have been translated in terms of energy content and corrected with the inflation rate, in USD$_{2013}$/GJ. Results can be found in Figure 16. As can be seen, even at its highest value (corresponding to production in Europe), bioSNG has a lower cost per energy content unit than most biofuels, including BTL diesel. However, bioSNG is in general more expensive than fossil natural gas, and therefore should be labelled as biofuel in order to be competitive. The projected cost of fossil natural gas cost ranges between 7.3 – 9.6 USD$_{2013}$/GJ in North America, 13.8 – 16.9 USD$_{2013}$/GJ in Pacific, and 11.1 – 14.4 USD$_{2013}$/GJ in Europe [207], whereas bioSNG has estimated in this work as 14-24 USD$_{2013}$/GJ (see Table 16).

Figure 16: Comparison of 2030 forecasted prices of fuels in terms of energy content (data 1-7 adapted from [206], data 8-10 adapted from [207]).

1 A conversion factor of 1 GJ = 0.95 MBtu, and an inflation rate of 2.65% (average in United States in 2000-2013 [9][10]) have been applied for the calculation of prices in USD$_{2013}$/GJ from USD$_{2010}$/MBtu.
5.3 Internalization of CO$_2$ emissions costs in bioSNG price

Prices compared in Figure 16 do not take into account the cost of CO$_2$ emitted during the cycle life of SNG. Actually, reduction of greenhouse gases is one of the main advantages of using biomass instead of coal for SNG production. The internalization of CO$_2$ emissions into the fuel cost increases the economic feasibility of bioSNG. In order to quantify this effect, three gaseous fuels have been compared:

1. Fossil natural gas, as reference (NG).
2. SNG produced from coal (CSNG).
3. SNG produced from biomass gasification (bioSNG).

For the comparison, the following assumptions have been taken:

- The cost of CO$_2$ emissions in 2030 is 40 USD$_{2010}$/ton CO$_2$ in Europe (Current Policies and New Policies scenarios), 23 USD$_{2010}$/ton CO$_2$ in China (New Policies scenario) and 30 USD$_{2010}$/ton CO$_2$ in United States [207]

- The price of natural gas in 2030 corresponds to the IEA New Policies scenario [207], i.e. between 11.7 USD$_{2010}$/GJ in Europe, 13.9 USD$_{2010}$/GJ in Asia-Pacific, and 7.9 USD$_{2010}$/GJ in North America [207].

- SNG from coal is assumed to be produced from steam coal (109.3 USD$_{2010}$/ton in 2030 according to the New Policies scenario [207]). Using the average 980 USD$_{2013}$/kW$_{\text{input}}$ obtained in Section 2 of the document as input value for the TCI of a CSNG plant, and the same methodology applied to estimate the cost price of bioSNG, this results in a cost price of SNG from coal of 14.8 USD$_{2013}$/GJ.

- BioSNG cost, 24 USD$_{2013}$/GJ, has been taken from the result of the European scenario (conservative case) obtained in this work.

- CO$_2$ sequestration has not been considered in any case.

- Costs have been updated to USD$_{2013}$ by assuming an inflation rate of 2.65% (average of United States in 2000-2013 [9][10]).

- CO$_2$ emission values, expressed in ton/MJ SNG or NG, have been calculated from data found in literature. In each case, combustion of CH$_4$ produced, and production of CO$_2$ during the SNG synthesis process have been considered. Calculated values are summarized in Table 17.

2 United States is considered in the New Policies scenario to adopt a ‘shadow price’ for CO$_2$ ranging between 15 USD$_{2010}$/ton in 2015 to 35 USD$_{2010}$/ton in 2035 [207].
Table 17: CO₂ emissions for the process cycles considered.

<table>
<thead>
<tr>
<th>Case</th>
<th>CO₂ emission (ton CO₂/m³ SNG or NG)</th>
<th>CO₂ emission (ton CO₂/MJ SNG or NG)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas</td>
<td>0.0020</td>
<td>5.7 10^{-5}</td>
<td>[7]</td>
</tr>
<tr>
<td>SNG from coal</td>
<td>0.016</td>
<td>2.7 10^{-5}</td>
<td>[151]</td>
</tr>
<tr>
<td>BioSNG</td>
<td>0.000625</td>
<td>1.8 10^{-5}*</td>
<td>[7]</td>
</tr>
</tbody>
</table>

* In agreement with the values of CO₂ emissions of biomass [208], and applying a factor of 70% efficiency (LHV basis) for the conversion of biomass to SNG.

Costs of natural gas and SNG from coal have been calculated for three scenarios, Europe, China, and United States (USA), in order to take into account the different expected cost of natural gas and CO₂ emissions. Results of calculations are displayed in Table 18 and Figure 17.

Table 18: Effect of cost of CO₂ emissions on cost of natural gas and SNG from coal and biomass.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Scenario</th>
<th>Base price in 2030 (USD2013/GJ)</th>
<th>CO₂ emission cost (USD2013/ton CO₂)</th>
<th>CO₂ emission cost (USD2013/GJ)</th>
<th>Total cost (USD2013/GJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>Europe</td>
<td>12.7</td>
<td>43.3</td>
<td>+ 2.5</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>15.0</td>
<td>24.9</td>
<td>+ 1.4</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>8.5</td>
<td>32.4</td>
<td>+ 1.8</td>
<td>10.4</td>
</tr>
<tr>
<td>CSNG</td>
<td>Europe</td>
<td>14.8</td>
<td>43.3</td>
<td>+ 11.7</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>14.8</td>
<td>24.9</td>
<td>+ 6.7</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>14.8</td>
<td>32.4</td>
<td>+ 8.8</td>
<td>23.6</td>
</tr>
<tr>
<td>BioSNG</td>
<td></td>
<td>24</td>
<td>43.3</td>
<td>+ 0.8</td>
<td>24.8</td>
</tr>
</tbody>
</table>

As can be seen, the internalization of the cost of CO₂ emissions makes bioSNG competitive with SNG produced from coal. It is interesting to observe in Table 18 the significant penalty of CO₂ emission in the increase of CSNG cost with respect to natural gas, which in the end makes it the most costly gaseous fuel.

Figure 17: Summary of results of addition of CO₂ emission cost on 2030 untaxed price of natural gas, and SNG from coal and biomass.
Outlook

This report has dealt with the estimation of the investment cost of a bioSNG plant and the cost price of bioSNG. As analysed in Section 5.2, the cost of bioSNG in terms of energy content is expected to be competitive with other biofuels in the medium term. However, bioSNG is in general more expensive than fossil natural gas, and should be labelled as biofuel in order to be competitive. Therefore, the question that must be addressed is how to reduce the cost price of bioSNG to become economically attractive. In this section, some key topics that might enhance the economy of bioSNG are briefly discussed.

Co-production of SNG and chemicals/biofuels

Producer gas from fluidized bed gasification contains high amounts of methane, which is good for the efficiency to bioSNG, but it also contains significant amounts of other hydrocarbon molecules like benzene and ethylene. These molecules are converted into methane in the conventional configuration of bioSNG plant (see Figure 2). Benzene and ethylene require special attention due to their tendency to form coke on the methanation catalysts. At the same time, benzene and ethylene are valuable chemicals, which add up to more than 25% of the heating value of the raw producer gas. Therefore, separation of benzene and ethylene rather than conversion to methane might be an attractive option. ECN is currently developing technology for the recovery of valuable hydrocarbons from producer gas. At the same time, research is ongoing to increase the yield of valuable chemicals in gasification to further improve the business case of co-production bioSNG and chemicals.

Besides hydrocarbons, almost half of the producer gas from fluidized bed gasification consists of H₂ and CO. This syngas can be used to produce liquid biofuels or biochemicals like diesel, jetfuel, or methanol, where the unconverted gases and all the hydrocarbons subsequently are converted into SNG. This combination brings economic benefits because of the high value liquid biofuels, but also has several technical synergies that may reduce the costs of the plant.

Another attractive option involves the co-production of LNG and chemicals/biofuels. The production of LNG through cryogenic separation offers the additional advantage...
possibility of delivering ultra-clean syngas (H₂ and CO) for subsequent synthesis of bio-methanol or other biofuels.

BioCCS

BioSNG production will always result in a large flow high-purity CO₂. The volume of CO₂ roughly equals the bioSNG production on a volume basis. Contrary to Carbon Capture and Storage (CCS) applied to reduce CO₂-emissions from fossil fuel processes, CCS combined with bioSNG production hardly involves an energy penalty, since CO₂ separation is an integral part of the bioSNG process. Implementation of capture and storage of CO₂ in bioSNG plants is therefore a relatively efficient and cheap method to reduce CO₂ concentrations in the atmosphere, allowing negative CO₂ emissions. Moreover, costs of bioSNG might be reduced in cases where there is a market for the produced CO₂.

Power-to-Gas

The production of large quantities of CO₂ in the bioSNG process offers another opportunity through the implementation of the so-called power-to-gas (P2G) concept. Hydrogen produced from excess renewable power production in regions with high shares of solar or wind power can be added to an existing bioSNG plant to produce additional methane while consuming CO₂ that otherwise would be lost as a carbon source. This concept involves limited additional costs in the bioSNG process, since it only requires additional capacity in the last part of the process. The combination of bioSNG and power-to-gas therefore creates a cost benefit that might improve the economics of bioSNG production.
Conclusions

- The total capital investment for 1 GW bioSNG plant has been estimated as \(~1530 \text{ USD}_{2013}/\text{kW}_{\text{input}}\) based on the absolute cost references for GTL, CTL, CTM, CSNG and IGCC plants, and taking into account the technical differences with respect with a bioSNG plant.
- Cost of biomass-to-SNG plant ranges from +5% to +30% compared to the selected commercial reference technologies.
- Technology learning could decrease the TCI for a bioSNG plant with about 30% to \(~1100 \text{ USD}_{2013}/\text{kW}_{\text{input}}\) after 10 GW of cumulative installed capacity in the medium-term (2030).
- The cost price for 1 GJ of bioSNG largely depends on the biomass feedstock used. Three scenarios (wood chips in Europe and United States, or inexpensive agricultural residues from Brazil/India) have been analysed. A TCI of \(1100 \text{ USD}_{2013}/\text{kW}_{\text{input}}\) results in an overall bioSNG cost price ranging between 14-24 USD_{2013}/GJ or 0.45-0.77 USD_{2013}/Nm^3 (Groningen quality gas).
- Despite the highest bioSNG costs compared with the rest of scenarios considered, Europe offers several advantages for the deployment of SNG from biomass, e.g. existing natural gas infrastructure, and a developed SNG market based on incentives and obligations.
- In the medium term (2030), bioSNG is expected to have a lower cost in terms of energy content than other liquid biofuels. However, it cannot be competitive with fossil natural gas prices.
- Internalization of CO\(_2\) emissions in the medium-term final cost of SNG reveals that bioSNG could be competitive with SNG produced from coal. Even so, medium-term bioSNG prices are expected to remain higher than those of natural gas.
- The implementation of concepts such as the co-production of bioSNG/bioLNG and chemicals/biofuels, the capture and storage of CO\(_2\), or power-to-gas systems will contribute to enhance the business case of bioSNG production. ECN is working on all these topics.
Appendix A. Assumptions for calculation of TCI costs

A.1 Efficiency of reference plants

- Efficiency GTL plants: 60% [194][195][209]
- Efficiency CTL plants: 49% [195]
- Efficiency CTM plants: 55% [210][211]
- Efficiency CSNG plants: 60% (LHV based) [197][212]
- Efficiency IGCC plants: 42% [161][165]

A.2 Distribution of products

- CTL plants: 4% LPG, 48% diesel, 48% gasoline (% wt.) (high-temperature Fischer-Tropsch) [213].
- GTL plants: 70% diesel, 25% gasoline, 5% LPG [37][193].

A.3 Heating value of fuels

- LHV diesel: 43.1 MJ/kg
- LHV gasoline: 43.95 MJ/kg
- LHV LPG: 46.61 MJ/kg
- 1 bbl = 5.7 GJ LHV diesel = 4.75 GJ LHV gasoline = 0.015 GJ LHV LPG
- LHV methanol = 19.9 MJ/kg
- LHV SNG: 35 MJ/Nm³
- LHV Groningen natural gas: 32 MJ/Nm³

A.4 Economic analysis

The total investment cost normalized to a 1 GW plant, TCI_2, is calculated by applying equation (Eq. 1):

$$TCI_2 = TCI_1 \left(\frac{P_1}{P_2} \right)^F$$ \hspace{1cm} (Eq. 1)

where:

- TCI_2: Total Investment Cost normalized to 1 GW input (USD).
- TCI_1: Total Investment Cost given at P_2 input power (USD).
- P_2: Input size of reference plant (GW).
P_2 : Normalized power input (equal to 1 GW).

F : Scale-up factor (William’s factor): 0.7 [8].

The total investment cost updated to 2013-USD TCI_3 is obtained after applying (Eq. 2):

$$TCI_3 = TCI_2 \left(1 + \frac{I}{100}\right)^{2013-Y} \tag{Eq. 2}$$

where:

I : Inflation rate, taken as 2.65% (average inflation rate in the United States in the period 2000 - 2013) [9][10].

Y : Start-up year of reference plant.

In case of plants under construction with start-up data beyond 2013, or plants with no available start-up date in literature, 2013 is assumed as reference year for calculations.

In case that the investment costs are provided in a currency different than American Dollars, the following exchange rates are applied:

1 CNY = 0.163 USD; 1 EUR = 1.359 USD

A.5 Learning effects

Learning effects are analysed in Section 4 of this document. Learning curves are often expressed as (Eq. 3):

$$C_t = C_0 \left(\frac{P_t}{P_0}\right)^{-\alpha} \tag{Eq. 3}$$

where C_t is the cost of the plant at time t, C_0 is the cost of the plant at $t = 0$, P_t the cumulated installed capacity (in GW) at time t, P_0 the number of plants installed at time $t = 0$ and α the learning index. The α is related to the Progress Ratio PR, as shown in (Eq. 4), which expresses the percentage to which costs are reduced by doubling the installed capacity:

$$PR = 2^{-\alpha} \tag{Eq. 4}$$

The PR is related to more commonly known Learning Rate (LR) by $LR = 1 - PR$. The progress and learning rates strongly depend on the type of technology. Typical values for progress ratios are $0.8 - 0.9$ [201].

Since biomass-to-SNG technology is relatively new, a learning rate of 10% has been assumed in this work. By applying (Eq. 4), this means a learning index α of 15%. Therefore, according to (Eq. 3), increasing the capacity from 1 to 10 GW would reduce the costs with 30%.
Appendix B. Status of reference technologies

For a realistic, credible estimation of total investment costs of reference technologies, only operational or under construction plants have been considered. However, in the recent years there is a large number of coal-based projects that have been shelved or delayed, especially in the United States. In this Appendix, some background information on the status of some reference technologies, as well as a review of some coal commercial projects delayed or shelved, is presented.

B.1 Coal-to-SNG in China

Economic development is a key priority in China, and energy is needed for that purpose. However, China has growing import dependency on oil and gas. Coal is the main hydrocarbon resource of China, and the Chinese coal industry is the largest in the world. Therefore, SNG allows both objectives by substituting imported gas and oil products for heating and cooking applications. China is now building the largest SNG industry in the world [151]. Although it is still unclear the role of SNG in the future energy scenario of China, SNG could provide a significant contribution to the country’s gas supply, which may outstrip shale gas in both quantity and timing [156].

In 2012 there were more than 30 proposed SNG projects with a combined capacity of 120 billion m3/y. In 2013, the central government has approved nine large-scale SNG plants with a total capacity of 37 billion m3 of natural gas per year. Total planned capacity of nearly 200 billion m3/y exceeds by far China’s total natural gas demand [151].

If full target capacity of the under construction projects is reached, coal gasification could supply 89-96 billion m3/y [156]. The first two commercial coal gasification projects are Qinghua Coal Group’s project in Yili, Xinjiang (1.38 billion m3/y in first phase, rising eventually to full potential capacity of 5.5 billion m3/y). The second project is Xinjiang Guanghui (0.5 billion m3/y). Four more projects are expected to be completed in 2013, two in Inner Mongolia and two more in Xinjiang [156].

Operating or under construction commercial CSNG plants in China are summarized in Table 4 of Section 2. Planned CSNG plants can be found in Table 19.
B.2 Coal-to-liquids in China

China is also looking to coal as an alternative to oil, and proposals for over 60 million tons of coal-to-liquids (CTL) capacity (about 1.2 million bbl/day) have been submitted for review [214]. Operating or under construction commercial CTL plants in China are summarized in Table 2 of Section 2.

B.3 Coal-to-methanol in China

Methanol can be used as liquid fuel or as feedstock for DME plants and methanol-to-ethylene or methanol-to-propylene plants. In 2007, total consumption of methanol in China was ~ 10 million ton, of which 65% was produced from coal. Since China has a lack of oil and gas, but is rich in coal resources, it is expected that the country will focus on coal-to-methanol processes for a long period of time in the future [60].

B.4 Coal-to-SNG in United States

Beginning 2000, in response to increases in natural gas prices, American utilities began a renewed push to build new coal-fired electricity generating plants. By the spring of 2007, approximately 150 such projects were either under construction or in various stages of planning. Since then, scores of coal-fired power plants have been cancelled, but others have been proposed.

By 2009, there were at least 15 CSNG plants proposed in United States in different stages of development [215]. The prospects of coal-to-SNG technology seemed promising, due to the abundance of coal supply, a rise of prices of oil and natural gas, the interest in energy independency and environmental considerations, and financial incentives (long-term SNG purchase agreements with energy utilities, which removed commodity risks; 80% debt/equity ratio with virtually all long-term debt covered by federal loan guarantee) [216].

However, new developments in horizontal drilling and hydraulic fracturing have greatly expanded shale gas and oil production in North America. As a consequence, shale gas production in the United States has increased by around five times from 2006 to 2010. This increase is over 20% of the dry natural gas production volume in the US. Shale gas has caused the Henry Hub spot price to drop from 12 USD/Mscf in June 2008 to less than 4 USD/Mscf in January 2012 [217]. This boost in unconventional natural gas production is expected to continue to expand over the medium term [205].

Low gas prices associated with the shale gas revolution have caused a marked decrease in coal use in the United States, the world’s second-largest consumer. In 2005, when the first shale well was fractured, coal produced almost three times as much power in the United States as gas. By 2017 it is expected that coal and natural gas have similar contribution. The abundance of natural gas has reduced the economic viability of SNG
plants [151][205][218]. Table 20 shows the status of some planned CSNG projects in United States.

B.5 Coal-to-liquids in United States

United States is the largest oil importer in the world. Petroleum imports accounts for 60% of total, with a cost of 265 billion USD in 2006. The need for fulfilling the increased demand for transportation fuels, as well as the abundant coal reserves, are the main drivers for the development of the CTL industry in United States[219].

However, there are several barriers to the creation of US CTL industry, including oil price volatility, technical uncertainty in terms of integration of plant components, need for incremental investment in coal mining infrastructure, availability of materials and resources, and environmental concerns (CO₂ emissions, water availability) [219]. These factors have influenced the large number of projects delayed or shelved, as shown in Table 21.

B.6 Coal-to-liquids in Australia

Some of the CTL projects being investigated in Australia include [220]:

- Linc Energy: commercial underground coal gasification to liquids in the Arckaringa Basin.
- Carbon Energy.
- Cougar Energy.
- Blackham Resources.
- Altona Resources Arckaringa Coal-to-Liquids and Power Project.
- FuturGas Project, by Hybrid Energy Australia.

Nevertheless, environmental concerns together with high capital costs are likely to limit development and expansion of the CTL industry in Australia in the immediate future. If CCS technology and deployment matures, this may provide the economic conditions under which CTL could become viable [221].
Table 19. Data of some planned commercial-scale coal-to-SNG projects in China.

<table>
<thead>
<tr>
<th>Project name</th>
<th>Location</th>
<th>Plant output (bcm/y)</th>
<th>Plant output (GW)</th>
<th>Investment (billion USD)</th>
<th>Start-up date</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>China Guodian Corporation</td>
<td>Xing’an, Inner Mongolia</td>
<td>2</td>
<td>2.22</td>
<td>2.12</td>
<td>2014</td>
<td>[53]</td>
</tr>
<tr>
<td>Beijing Holding Group</td>
<td>Hohhot, Inner Mongolia</td>
<td>4</td>
<td>4.44</td>
<td>4.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Shaanxi Coal and Chemical Industry Group</td>
<td>Yulin, Shaanxi</td>
<td>3</td>
<td>3.33</td>
<td>5.23</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CNOOC, Datong Coal Mine Group Company</td>
<td>Datong, Shanxi</td>
<td>4</td>
<td>4.44</td>
<td>4.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Shanxi International Power Group, Wison Engineering</td>
<td>Shuozhou, Shanxi</td>
<td>4</td>
<td>4.44</td>
<td>3.92</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Qinghua Group</td>
<td>Yining County, Yili, Xinjiang</td>
<td>1.3</td>
<td>1.44</td>
<td>0.82</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Shendong Tinanlong Group</td>
<td>Changji, Xinjiang</td>
<td>1.3</td>
<td>1.44</td>
<td>1.12</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>China Huadian Corporation</td>
<td>Changji, Xinjiang</td>
<td>4</td>
<td>4.44</td>
<td>4</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Kailuan Group</td>
<td>Changji, Xinjiang</td>
<td>4</td>
<td>4.44</td>
<td>2.86</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Xinjiang Guanghui Group</td>
<td>Aletai, Xinjiang</td>
<td>4</td>
<td>4.44</td>
<td>3.27</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Xuzhou Coal Mining Group</td>
<td>Tacheng, Xinjiang</td>
<td>4</td>
<td>4.44</td>
<td>3.59</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Anhui Province Energy Group, State Development & Investment Corporation (SDIC)</td>
<td>Fengtai County, Huainan, Anhui</td>
<td>2</td>
<td>2.22</td>
<td>2.45</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 20. Data of some commercial-scale coal-to-SNG projects in the United States.

<table>
<thead>
<tr>
<th>Project name</th>
<th>Location</th>
<th>Plant output (bcf/y)</th>
<th>Investment (billion USD)</th>
<th>Projected start-up date</th>
<th>Status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Energy Inc.</td>
<td>Decatur, Illinois</td>
<td>20</td>
<td>0.8</td>
<td>2009</td>
<td>On hold/delayed</td>
<td>[6][222][223]</td>
</tr>
<tr>
<td>Power Holdings of Illinois LLC</td>
<td>Rend Lake, Illinois</td>
<td>50</td>
<td>2</td>
<td>2013</td>
<td>Delayed/on hold</td>
<td>[6][222][224][225]</td>
</tr>
<tr>
<td>Indiana Gasification LLC (Leucadia/E3 Gasification/Johnston & Associates)</td>
<td>Indiana</td>
<td>40 (+ 134 MW electricity)</td>
<td>2.65</td>
<td>2015</td>
<td>Shelved/delayed</td>
<td>[6][214][222][226][227]</td>
</tr>
<tr>
<td>Oswego SNG Project/TransGas Development Systems</td>
<td>Scriba, New York</td>
<td>3.9</td>
<td>2</td>
<td>2010</td>
<td>Shelved</td>
<td>[6][222][228]</td>
</tr>
<tr>
<td>South Heart Coal Gasification Project (Great Northern Power Development, L.P./Allied Syngas Corporation)</td>
<td>Stark County, North Dakota</td>
<td>36.5</td>
<td>1.4</td>
<td>2012</td>
<td>On hold</td>
<td>[6][222][229]</td>
</tr>
<tr>
<td>Leucadia’s Mississippi Gasification</td>
<td>Moss Point, Mississippi</td>
<td>120</td>
<td>2</td>
<td>2015</td>
<td>On hold</td>
<td>[6][222][226][230]</td>
</tr>
<tr>
<td>Leucadia Illinois Plant</td>
<td>Cook County, Illinois</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>On hold</td>
<td>[6][222][231]</td>
</tr>
<tr>
<td>ConocoPhillips/Peabody Energy</td>
<td>Muhlenberg County, Kentucky</td>
<td>50-70</td>
<td></td>
<td>2014</td>
<td>On hold</td>
<td>[6][222][232]</td>
</tr>
<tr>
<td>Hunton Energy</td>
<td>Freeport, Texas</td>
<td>-</td>
<td>2.4</td>
<td>2012</td>
<td>Shelved</td>
<td>[6][222][233]</td>
</tr>
</tbody>
</table>
Table 21. Data of some commercial-scale coal-to-liquids projects in the United States [222].

<table>
<thead>
<tr>
<th>Project name</th>
<th>Location</th>
<th>Plant output (bbl/day)</th>
<th>Investment (billion USD)</th>
<th>Projected start-up date</th>
<th>Status</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKRW Energy / SNC-Lavalin</td>
<td>Medicine Bow, Wyoming</td>
<td>20 000</td>
<td>2</td>
<td>2014</td>
<td>On hold</td>
<td>[234][235][236][237]</td>
</tr>
<tr>
<td>Rentech Mingo County CTL Project</td>
<td>Mingo County, West Virginia</td>
<td>20 000</td>
<td>4</td>
<td>2015</td>
<td>Shelved</td>
<td>[238]</td>
</tr>
<tr>
<td>Rentech Natchez CTL Project</td>
<td>Natchez, Mississippi</td>
<td>25 000</td>
<td>2.75</td>
<td>2014</td>
<td>Cancelled</td>
<td>[239][240][241]</td>
</tr>
<tr>
<td>TransGas Adams Fork Energy Plant</td>
<td>Mingo County, West Virginia</td>
<td>18 000</td>
<td>4</td>
<td>2013</td>
<td>On hold</td>
<td>[242]</td>
</tr>
<tr>
<td>Australian-american Energy / Great Western Energy, Many Stars Plant</td>
<td>Big Horn County, Montana</td>
<td>50 000</td>
<td>7.4</td>
<td>2016</td>
<td>Shelved</td>
<td>[243]</td>
</tr>
<tr>
<td>Ambre Energy</td>
<td>Southwestern Montana</td>
<td>1 600 000</td>
<td>0.375</td>
<td>2011</td>
<td>Shelved</td>
<td>[244]</td>
</tr>
<tr>
<td>Clean Coal Power Operations</td>
<td>Paducah, Kentucky</td>
<td>40 000 (+ 300 MW electricity)</td>
<td>7.6</td>
<td>2013</td>
<td>Shelved</td>
<td>[245]</td>
</tr>
<tr>
<td>Drummond Coal Company</td>
<td>Montgomery County, Illinois</td>
<td>48 000</td>
<td>3.6</td>
<td>-</td>
<td>Shelved</td>
<td>[246]</td>
</tr>
<tr>
<td>Waste Management & Processors</td>
<td>Gilberston, Pennsylvania</td>
<td>5034 (+ 41 MW electricity)</td>
<td>1</td>
<td>2010</td>
<td>Shelved</td>
<td>[247]</td>
</tr>
<tr>
<td>Baard Energy</td>
<td>Wellsville, Ohio</td>
<td>35 000 (+ 200 MW electricity)</td>
<td>5</td>
<td>2013</td>
<td>On hold (no longer coal-based)</td>
<td>[248]</td>
</tr>
</tbody>
</table>
Appendix C. Brief overview of BTL and bioSNG projects in Europe

In this work, TCI of bioSNG plants has been estimated from references of operational or under construction large-scale facilities. The inclusion of biomass-to-liquids or biomass-to-SNG plants would have distorted the analysis, given the much lower scale of the first demonstration facilities of this type. However, in the last years, a number of initiatives for production of SNG, liquid transportation fuels and chemicals from biomass has been developed.

The development of bioenergy industry in Europe is driven by the need for fulfilling the EU 20/20/20 targets, as well as the security of energy supply. Four main value chains of bioenergy can be identified [249][250]: synthetic fuels, bio-SNG, high-efficiency CHP, and intermediate energy carriers (bio-oil, torrefaction). Among them, this Appendix briefly summarizes the state-of-the-art of demonstration facilities of biomass-to-fuels and SNG in Europe.

Table 22 and Table 23 summarize the status of some current European BTL and bioSNG projects, respectively.
Table 22. Performance and status data of some current demonstration-scale biomass-to-liquids projects in Europe.

<table>
<thead>
<tr>
<th>Project name</th>
<th>Location</th>
<th>Plant input (MWth)</th>
<th>Plant output (ton/y)</th>
<th>Investment (million EUR)</th>
<th>Projected start-up date</th>
<th>Products</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metsa Group / Vapo, Forest BtL plant</td>
<td>Kemi, Finland</td>
<td>320</td>
<td>115 000</td>
<td>530</td>
<td>2016</td>
<td>92000 ton/y diesel, 32000 ton/y naphtha</td>
<td>[250][251][252]</td>
</tr>
<tr>
<td>Karlsruhe Institute of Technology, Bioliq project</td>
<td>Karlsruhe, Germany</td>
<td>2</td>
<td>608</td>
<td>-</td>
<td>2013</td>
<td>DME, gasoline</td>
<td>[250][251][253]</td>
</tr>
<tr>
<td>Chemreq, BioDME Project</td>
<td>Pitea, Sweden</td>
<td>3</td>
<td>1460</td>
<td>~22</td>
<td>2011</td>
<td>DME</td>
<td>[250][251][253][254][255][256]</td>
</tr>
<tr>
<td>Chemrec, Domsjo and Vallvik Projects</td>
<td>Sweden</td>
<td>200</td>
<td>100 000</td>
<td>49</td>
<td>2015</td>
<td>Methanol (140000 ton/y to DME (100000 ton/y)</td>
<td>[250][251][257][258][259]</td>
</tr>
<tr>
<td>UPM, demonstration plant</td>
<td>Strasbourg, France</td>
<td>300</td>
<td>105 000</td>
<td>170</td>
<td>2014</td>
<td>80% diesel, 20% naphtha</td>
<td>[250][251]</td>
</tr>
<tr>
<td>Woodspirit Project</td>
<td>Netherlands</td>
<td>200 000</td>
<td></td>
<td>199</td>
<td>2016 - 2017</td>
<td>Methanol</td>
<td>[250][251]</td>
</tr>
<tr>
<td>BioTfueL Project</td>
<td>France</td>
<td>12</td>
<td>-</td>
<td>112.7</td>
<td>2014</td>
<td>F-T products</td>
<td>[250][251][260]</td>
</tr>
<tr>
<td>Värmlandsmetanol AB</td>
<td>Hagfors, Sweden</td>
<td>111</td>
<td>92 000</td>
<td>300-380</td>
<td>2015-2017</td>
<td>Methanol</td>
<td>[250][251][256][261]</td>
</tr>
<tr>
<td>Gussing FT pilot</td>
<td>Gussing, Austria</td>
<td>8</td>
<td>0.2¹</td>
<td>-</td>
<td>2005</td>
<td>Heat and power. Test site for F-T, SNG, alcohols and H₂</td>
<td>[250][251][253][256]</td>
</tr>
</tbody>
</table>

¹ Pilot plant (slipstream from produced gas).
Table 23. Performance and status data of some current demonstration-scale biomass-to-SNG projects in Europe.

<table>
<thead>
<tr>
<th>Project name</th>
<th>Location</th>
<th>Plant output (MWth)</th>
<th>Investment (million EUR)</th>
<th>Projected start-up date</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECN/HVC project</td>
<td>Alkmaar, Netherlands</td>
<td>12 MWth input heat and power (1st demo plant) 50-100 MW SNG (2nd demo plant)</td>
<td>-</td>
<td>2014</td>
<td>[250][253][262] [263][264]</td>
</tr>
<tr>
<td>E.On Bio2G Project</td>
<td>Landskrona or Malmo, Sweden</td>
<td>200</td>
<td>450</td>
<td></td>
<td>[250][262][264][265]</td>
</tr>
<tr>
<td>Goteborg Energi/ E.On, GoBiGas Project</td>
<td>Goteborg, Sweden</td>
<td>20 (1st phase) 80 – 100 (2nd phase)</td>
<td>140 (1st phase) 59 (2nd phase) ~ 220 total</td>
<td>2016 (2nd phase)</td>
<td>[250][253][262][264][266][267][268]</td>
</tr>
<tr>
<td>GAYA Project</td>
<td>France</td>
<td>20-60</td>
<td>-</td>
<td>2017</td>
<td>[250][256][262][269][270]</td>
</tr>
<tr>
<td>Gussing FT pilot</td>
<td>Gussing, Austria</td>
<td>1</td>
<td>-</td>
<td>2002</td>
<td>[250][262]</td>
</tr>
</tbody>
</table>
Appendix D. Examples of reference plants

D.1 Example of GTL plant: Sasol ORYX

The Sasol ORYX GTL plant (GTL.3 in Table 1 of Section 2) has been selected as reference example for comparison purposes in Section 3.1. The process flow diagram of the plant is shown in Figure 18.

Figure 18: Simplified process flow diagram of the ORYX GTL plant [26].

Natural gas feedstock from the Qatar’s North Field is routed to LNG facilities in Ras-Laffan. After desulphurization, natural gas is fed to the GTL plant. 96% is used as feedstock for syngas production, whereas 4% is used as fuel [24]. An air separation unit produces oxygen which is sent to the autothermal reforming unit. Methane reacts with oxygen and steam in order to produce synthesis gas. After cooling, syngas produced is fed to the Fischer-Tropsch unit. ORYX GTL uses Sasol low-temperature slurry bed reactors with proprietary catalysts. The long-chain paraffin hydrocarbons produced are cooled and separated into tail gas, wax, hydrocarbon condensate and reaction water. Tail gas is sent for further hydrocarbon recovery, whereas hydrocarbon condensate and wax are sent to the hydrocracking unit (which uses Chevron catalysts). Water is treated and exported for irrigation applications. Product from hydrocracking is routed to a series of flash vessels to separate liquid and vapour phases. Vapour is recycled and liquid is fractionated and treated into final products (naphtha, diesel, LPG, etc.). Hydrogen used in the hydrotreating unit is produced from steam reforming of natural gas, shift conversion, and purification via pressure swing absorption [24].
For the analysis presented in Section 3.2, Sasol Secunda plant (see CTL.2 in Table 2 of section 2) has been selected as reference CTL facility.

Construction of Sasol II began in the mid-1970s, with operation of the two plants commencing in the early 1980s. The two plants contain 80 Sasol-Lurgi Fixed Bed Dry Bottom (FBDB) gasifiers. The feedstock for the plants is sub-bituminous coal supplied by Sasol Mining, a sister company of Sasol Synfuels. Natural gas is also used as a supplemental feedstock. Sasol Synfuel plant uses HTFT technology in the Sasol Advanced Synthol (SAS) process to convert synthesis gas from coal into automotive and other fuels, as well as a wide range of light olefins. The coal is converted in the gasifiers into a raw product gas with the addition of steam and oxygen. The produced syngas is then cooled, cleaned and conditioned as it leaves the gasifier, producing the first level of co-products as they condense or are recovered from the stream: tars, oils and pitches, ammonia, sulphur and phenols. Once purified, the syngas is sent to a suite of nine Sasol Advanced Synthol (SAS) reactors where it is reacted in the presence of a fluidized iron based catalyst at elevated pressure (~ 24 bar) and a temperature of about 350°C, producing hydrocarbons along with reaction water and oxygenated hydrocarbons. The hydrocarbons from the SAS reactors are cooled until most of the components are liquefied before fractionation is used to separate the various hydrocarbon-rich fractions. Methane rich gas is also produced in this process and is converted to syngas via autothermal reforming for internal processing and sale as pipeline gas. The C₂ rich stream is split into ethylene and ethane. Ethane is cracked in a high temperature furnace, yielding ethylene which is then purified. C₃H₆ or propylene from the light hydrocarbon gases is purified and used in the production of polypropylene. Alpha olefins pentene (C₅), hexene (C₆) and octene (C₈) are recovered, while the longer-chain olefins (C₇ - C₁₁) are introduced into the fuel pool. Oxygenates in the aqueous stream from the SAS process are separated and purified in the chemical work-up plant to produce alcohols, acetic acid and ketones including acetone, methyl ethyl ketone and methyl isobutyl ketone [46][49].
Figure 19: Process flow diagram of Sasol Synfuels plant [49]
D.3 Example of CSNG plant: Great Plains Synfuels

For the comparison analysis presented in Section 3.4, the coal-to-SNG plant of Great Plains (CSNG.1 in Table 4 of Section 2) has been taken as a reference.

The Great Plains plant was commissioned in 1984 in North Dakota (USA) and has a production of 4.8×10^6 m3 SNG/day and 98.7% availability [2][150]. The facility is operated by the Dakota Gasification Company and consists of 14 Lurgi fixed-bed updraft gasifiers followed by a WGS conversion unit (1/3 of the total stream) and CO$_2$ and sulphur removal via Rectisol$^\text{®}$ scrubbing (Figure 20). In the pressurized gasifiers, 18000 ton/day of lignite coal are contacted in counter-current with oxygen (delivered by an air separation unit, ASU) and steam. The resulting producer gas is cooled. After the Rectisol scrubbing only traces of hydrocarbons and sulphur compounds were found [1]. After the methanation unit, the product gas is compressed and dried, CO$_2$ is removed and the resulting SNG is distributed to end users via the national gas grid. In addition to SNG, other compounds are co-produced: CO$_2$ (for enhanced oil recovery), Kr, Xe and liquid N$_2$ (from the air separation unit), naphtha, phenol and cresylic acid are produced (from the gas liquor separation unit), ammonium sulphate and ammonia.

![Figure 20: Simplified process flow diagram of the Great Plains coal-to-SNG plant [2].](image)

D.4 Example of IGCC plant: ELCOGAS

Elcogas plant in Puertollano, Spain (see IGCC.5 in Table 5 of Section 2) has been selected as an example of commercial IGCC plant for comparison purposes in Section 3.5. Figure 21 displays a simplified scheme of the process.

The 300 MW Elcogas plant uses a mixture of 50% wt. subbituminous high-ash coal and 50% petroleum coke from a nearby oil refinery. Coal is ground to < 50-60 µm in two roller mills. The coal is partly dried in the mills and further dried to less than 2 % wt. via medium pressure steam and natural gas combustion. An Air Liquide air separation unit produces 85% pure oxygen for the gasifier. The dried coal is then sent through a lock hopper before being conveyed pneumatically to four side-mounted burners using nitrogen from the ASU as a carrying medium [169].
Syngas is produced in a pressurized entrained-flow Krupp Koppers Prenflo gasifier at 1200-1600°C and 24 bar. Raw syngas is quenched with recycled syngas to 900°C, and further cooled in water-tube syngas coolers to 240°C. Particles are removed with a ceramic candle filter, and syngas is scrubbed with water at 165°C to remove NH₃ and halides. Acid gas removal is carried out with an hydrolysis unit and MDEA amine scrubbing. Sulphur is recovered in a Claus unit. Clean syngas is sent to a Siemens gas turbine, where it is fired with N₂ for NOₓ reduction. The heat recovery steam generator (HRSG) produces steam from the gas turbine exhaust gases. The high-temperature and pressure steam produced is fed to a steam turbine to produce additional electricity [169].

Figure 21: Process layout of the Puertollano IGCC plant [180].
References

http://infoscience.epfl.ch/record/174475/files/c1ee02867g_owndownload.pdf

http://www.tradingeconomics.com/united-states/inflation-cpi

[10] *Historic inflation United States – CPI inflation*

http://barryonenergy.wordpress.com/2012/03/24/petrosas-mossel-bay-gtl-refinery/

environment/sasol-betting-big-on-gas-to-liquid-plant-in-us.html?pagewanted=all&r=0

[64] T. Si. **Shenhua shows the way to make gas from coal.** January 22, 2009

[65] S. Dubey. **Coal-to-liquids (CTL). Misplaced solution for oil starved world.**

[68] Xinhua News Agency. **Yankuang’s indirect CTL project likely to approved by NDRC.** iStockAnalyst, August 30, 2010

[69] Energy Justice Network. **American Lignite Energy CTL**
http://www.energyjustice.net/map/displayfacility-74062.htm

[70] Great River Energy. **North Dakota coal-to-liquids project establishes ‘American Lignite Energy’ for development effort.**
http://www.greatriverenergy.com/aboutus/pressroom/052507_americann_lignite_energy.html

[71] Downstream Today. **Fox Creek coal-to-liquids project.** September 10, 2008

[73] Alter NRG Corp. **Alter NRG announces Canada’s first CTL project.** Downstream Today, July 22 2008

[74] L Flint. **Fox Creek coal to liquids project: green fuels for the future.** APEGGA Professional Development Days, 2009

[75] H &WB Asia Pacific (Pte Ltd) Corporation. **Coal-to-liquids beginning in the Philippines.**
http://www.hwbasiapacific.net/features.html

[76] US firm gets licensing deal for coal-to-liquid plant. Mobility Tech zone, April 22, 2007

[77] H. Beltrán. **Govt, Likuen sign coal liquefaction plants deal.** BN Americas, July 19, 2005

[78] H. Beltrán. **Likuen liquefaction project secures 600 Mt of coal.** BN Americas, December 13, 2005

http://likuen.co/spip/spip.php?article11

[97] HSBC Global Research. *Sinopec Engineering (2386 HK)*
https://www.research.hsbc.com/R/20/p0X2LIS

Market Wire, June 6, 2007

[99] China Chemical Reporter. *Xianyan chemical to finance methanol project*.
EBSCOHost Connection, October 16, 2007
http://connection.ebscohost.com/c/articles/27082338/xianyang-chemical-finance-methanol-project

[100] Siemens AG. *Shanxi Xian yang Chemicals Industry Co., Ltd. Methanol Products – Xi an, China*, 2008

[103] Shenhua Group Corp. Ltd. *The first and largest coal to olefin project in the world is built up in Baotou. The construction of the project makes many records in China’s chemical and petrochemical industry*, December 16, 2010

[105] Y. Zhang. *Shenhua coal conversion technology and industry development*.
http://gcep.stanford.edu/pdfs/wR5MezrJ2SJ6NfFl5sb5Jg/16_china_zhangyuzhuo.pdf

http://www.nxmy.com/MagneticNingdong/index.htm

References

10. Industry overview

12. D. Wu. China’s Shaanxi Weihe Group starts up methanol plant. ICIS, September 15, 2011

13. F. Shen. China’s Shaanxi Weihe shuts methanol and DME plants on 9 April.

15. China Chemical Reporter. 600000 T/A coal-based methanol project launched in Gansu. HighBeam Research, October 26, 2005
 http://www.highbeam.com/doc/1G1-138861471.html

 http://www.highbeam.com/doc/1G1-135119732.html

17. Puworld. Huating 600 ktpa coal-based methanol project proceeds smoothly. October 15, 2009

18. D. Wu. China’s Xinghua chemical runs coal-chemical units at full rates. ICIS, December 9, 2011

 http://www.icis.com/Borealis/Article.asp?p=1&q=BFB3C6D1D8BDE2B6CCAD8DB96E8D9CAAFDCC1D48DAEE7B281AED7B8E8B4D5D6B0EC&id=B28494A49882AA

20. GE demonstrates scale and fuel flexibility of its gasification technology at two major projects in China. March 5, 2012

22. China Chemical Reporter. Fengfeng Group kicked off coal chemical project phase II. EBSCO Host Connection. September 6, 2009
 http://connection.ebscohost.com/c/articles/44127586/fengfeng-group-kicked-off-coal-chemical-project-phase-ii

23. Sinopec Tenth Construction Company. Coal to chemical project
 http://en.sinopetcen.com/comcontent17_detail.html

24. R. Qian. China’s Chongqing Kabei may delay methanol plant start-up. ICIS, August 21, 2012
 http://www.icis.com/Articles/2012/08/21/9588521/chinas-chongqing-kabei-may-delay-methanol-plant-start-up.html

25. D. Wu. China’s East Hope to start up new methanol unit by late Aug. ICIS, August 23, 2010

[147] China Color Website. The country’s largest coal methanol to dimethyl ether project will be put into operation in Xinjiang Yiwu. April 6, 2012 http://color.yanliao.net/youji_1/content/?119.html
[162] National Energy Technology Laboratory, US Department of Energy. Gasifipedia, power: IGCC project examples
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=00000000001012226

http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/45_1_SAN%20FRAN_CISCO_03-00_0098.pdf

http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/wabash.html

http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/project-examples.html\#duke

http://www.netl.doe.gov/publications/proceedings/02/Hybrid/Hybrid2Hornick.pdf

http://www.netl.doe.gov/technologies/coalpower/cctdcp/bibliography/demonstration/pdfs/tampa/TampaPPA8%20Final080904.pdf

http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/tampa.html

http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/elcogas.html

[184] National Energy Technology Laboratory, US Department of Energy. Gasifipedia. IGCC project examples
http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/project-examples.html#duke

http://www.emersonprocessxperts.com/2013/06/integrated-gasification-combined-cycle-igcc-at-duke-edwardsport/

http://lba.legis.state.ak.us/proposals/doc_log/2008-06_anrtrl_presentation.pdf

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1077&context=epp

[198] R.H. Williams, E.D. Larson, H. Jin. F-T liquids production from coal and coal + biomass with CO2 capture and alternative storage options: Aquifer CO2 storage vs. CO2-enhanced oil recovery

http://www.emissions-euets.com/attachments/259_Report%20from%20the%20Commission%20of%20February%202010%20COM%2011_Final.pdf

2007 http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=EFC&mid=SPE-94380-PA

[210] T.B. Reed. *Efficiencies of methanol production from gas, coal, waste or wood*

http://www.waset.org/journals/waset/v41/v41-178.pdf

http://www.mit.edu/people/leichen/Thermodynamic_Analysis_of_the_coal_to_SNG_process.pdf

http://www.sourcewatch.org/index.php/Coal-to-Liquids_in_China

http://www.nicholas.duke.edu/instituteold/climate/carbon-capture-and-storage/natgas

[216] Leucadia National Corporation. *Indiana coal to SNG*
http://www.purdue.edu/discoverypark/energy/assets/pdfs/CCTR-12-06-06-JClark.pdf

Hydrocarbon Processing, January 2013, 41-48
http://www.hatch.ca/Oil_Gas/Articles/Viability_GTL_NA_Gas_Market.pdf

[238] Source Watch. Mingo Project
http://www.sourcewatch.org/index.php/Mingo_Project

[239] Source Watch. Rentech Energy Midwest Corporation
http://www.sourcewatch.org/index.php/Rentech_Energy_Midwest_Corporation

[240] Source Watch. Belwood coal-to-liquids
http://www.sourcewatch.org/index.php/Belwood_Coal-to- Liquids

[241] Source Watch. Rentech’s Coal-to-Liquids projects
http://www.sourcewatch.org/index.php/Rentech#Rentech.27s_Coal-to- Liquids_Projects

[242] Source Watch. Adams Fork Energy Plant
http://www.sourcewatch.org/index.php/Adams_Fork_Energy_Plant

[243] Source Watch. Many Stars coal-to-liquids
http://www.sourcewatch.org/index.php/Many_Stars_Coal-to-Liquids

[244] Source Watch. Ambre Energy plant
http://www.sourcewatch.org/index.php/Aambre_Energy_plant

[245] Source Watch. Clean Coal Power Operations Coal-to-Liquids plant

[246] Source Watch. Drummond Coal-to-Liquids plant
http://www.sourcewatch.org/index.php/Drummond_Coal-to-Liquids_Plant

[247] Source Watch. Gilberton coal-to-clean-fuels and power project
http://www.sourcewatch.org/index.php/Gilberton_Coal-to-Clean- Fuels_and_Power_Project

[248] Source Watch. Ohio River Clean Fuels
http://www.sourcewatch.org/index.php/Ohio_River_Clean_Fuels

[249] I. Landälv. Thermochemical developments in Europe. TCBiomass 2013,

[266] Goteborg Energi. *GoBiGas builds in two phases* http://gobigas.goteborgenergi.se/En/The_project

[268] Goteborg Energi. *Gothenburg biomass gasification project, GoBiGas* http://www.goteborgenergi.se/English/Projects/GoBiGas__Gothenburg_Biomass_Gasification_Project

