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Abstract 

In this work, an economic assessment of large-scale production of Synthetic Natural Gas 

from biomass (bioSNG) has been carried out. With the aim of estimating the total 

capital investment of a large-scale bioSNG facility, different commercial plants based on 

gasification technology, including Gas-to-Liquids (GTL), Coal-to-Liquids (CTL),             

Coal-to-methanol (CTM), Coal-to-SNG (CSNG), and Integrated Gasification Combined 

Cycle (IGCC) have been used as references. The layout for SNG production from biomass 

is based on MILENA indirect gasification (technology developed by ECN). The average 

Total Capital Investment (TCI) for a large  bioSNG plant (1 GW thermal input) has been 

determined as ~1530 USD2013/kWinput. Technology learning could further decrease the 

TCI of a bioSNG plant with about 30% to 1100 USD2013/kWinput after a cumulative 

number of 10 GW installed capacity. A TCI of 1100 USD2013/kWinput results in an overall 

bioSNG cost price of 14-24 USD2013/GJ, largely depending on the price of biomass 

feedstock. From three scenarios considered (wood chips in Europe and United States, or 

cheap agricultural residues from Brazil/India), the latter is the best in terms of cost price 

of SNG. However, Europe offers several advantages for the deployment of SNG from 

biomass, e.g. existing natural gas infrastructure, and an existing SNG market based on 

incentives and obligations. Internalization of CO2 emissions in the 2030 untaxed price of 

SNG reveals that bioSNG can be competitive with SNG produced from coal, with a cost 

of 25 USD2013/GJ. Even so, medium-term bioSNG prices are expected to remain higher 

than future natural gas prices. However, the implementation of concepts such as the 

co-production of bioSNG/bioLNG and chemicals/biofuels, the capture and storage of 

CO2, or power-to-gas systems will contribute to enhance the business case of bioSNG 

production. ECN is working on all these topics. 
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Summary 

In this work, an economic assessment of large-scale production of Synthetic Natural Gas 

(SNG) from biomass is carried out. With the aim of estimating the total capital 

investment of a large-scale bioSNG facility, different commercial plants based on 

gasification technology have been used as references, including Gas-to-Liquids (GTL), 

Coal-to-Liquids (CTL), Coal-to-methanol (CTM), Coal-to-SNG (CSNG), and Integrated 

Gasification Combined Cycle (IGCC). Due to the uncertainty of the reported investment 

of plants (caused by differences of scale and start-up year, cost escalation,                    

co-production, reporting policies, etc.), a large number of references has been used in 

order to obtain a credible, realistic average value. The reference layout for SNG 

production from biomass is based on MILENA indirect gasification (technology 

developed by ECN). 

 

In addition, a systematic comparison between technologies has been carried out in 

order to incorporate the technical differences of bioSNG technology into the estimated 

total capital investment. Analysis has shown that biomass-to-SNG ranges from +5% to 

+30% compared to the selected commercial reference technologies. 

 

Based on absolute cost references of operating or under construction large-scale plants, 

and taking into account the technical differences with respect to a bioSNG plant, the 

averaged Total Capital Investment (TCI) for a large (1 GWinput) bioSNG plant has been 

determined as  ~1530 USD2013/kWinput.  

 

The effect of technology learning, also considered in the study, has been assumed to be 

able to further decrease the TCI of a bioSNG plant with about 30% to                           

1100 USD2013/kWinput after a cumulative number of 10 GW installed capacity      

(medium-term, e.g. in 2030). 

 

A TCI of 1100 USD2013/kWinput results in an overall bioSNG cost price ranging between       

14-24 USD2013/GJ or 0.45-0.77 USD2013/Nm
3
 (Groningen quality gas). The cost price for   

1 GJ of bioSNG largely depends on the price of the biomass feedstock (2-9 USD2013/GJ), 

and therefore, on the plant location. Using medium-term projections of prices of 

biofuels, it has been found that bioSNG has a lower cost in terms of energy content than 

liquid biofuels. However, untaxed prices cannot be competitive with current fossil 

natural gas prices. From the three scenarios considered (wood chips in Europe and 

United States, or inexpensive agricultural residues from Brazil/India), the latter is the 

best in terms of cost price of SNG. However, Europe offers several advantages for the 

deployment of bioSNG, such as a developed natural gas infrastructure, and the current 

existence of a market based on incentives and obligations.   
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Finally, in order to take into account the cost of CO2 emissions during the cycle life of 

SNG, cost of CO2 emissions has been added into the medium-term price of natural gas 

and SNG produced from coal and biomass. Results of internalization of CO2 emission 

cost in the 2030 untaxed price of SNG have shown that bioSNG can be competitive with 

SNG produced from coal, with a cost of 25 USD2013/GJ. Even so, medium-term bioSNG 

prices are expected to remain higher than future natural gas prices. However, the 

implementation of concepts such as the co-production of bioSNG/bioLNG and 

chemicals/biofuels, the capture and storage of CO2, or power-to-gas systems will 

contribute to enhance the business case of bioSNG production. ECN is working on all 

these topics. 
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Nomenclature 

ASU: Air separation unit. 

bbl/day: Barrels/day. 

bcf/y: Billion cubic feet/year. 

bcm/y: Billion cubic meter/year. 

bioLNG: Liquefied Natural Gas produced from biomass gasification. 

bioSNG: Synthetic Natural Gas produced from biomass gasification. 

BTL: Biomass to liquids. 

CCS: Carbon Capture and Storage. 

CNY: Chinese yuan renminbi  (1 CNY = 0.163 USD). 

CTL: Coal to liquids (diesel and naphtha transportation liquid fuels). 

CTM: Coal to methanol. 

CSNG: Coal to SNG. 

DME: Dimethyl ether. 

EUR: Euro (1 EUR = 1.359 USD). 

F-T: Fischer-Tropsch.  

HC: Hydrocarbons. 

HDS: Hydrodesulphurization. 

ISBL: Inside battery limits. 

IGCC: Integrated gasification combined cycle. 

LHV: Lower heating value (MJ/kg or MJ/Nm
3
). 

LPG: Liquefied petroleum gases. 

MDEA: Methyl diethanolamine. 

MeOH: Methanol. 

Mscf: Million standard cubic feet. 

O & M: Operation and maintenance. 

P2G: Power-to-gas. 

SNG: Synthetic natural gas. 

TCI: Total Capital Investment. 

USD: American dollar. 

USD2013: 2013 American dollar. 

WGS: Water-gas shift. 
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 1
Introduction 

1.1 Synthetic Natural Gas (SNG) as energy carrier 

SNG (Substitute Natural Gas, or Synthetic Natural Gas) is defined as a gas containing 

mostly CH4 (> 95% vol.), with similar properties to natural gas, which can be produced 

from thermochemical gasification of fuels (e.g. coal, biomass) coupled to subsequent 

methanation. Conversion efficiency of coal/biomass to SNG is higher than the efficiency 

to liquid fuels [1]. Overall efficiency of conversion from biomass to SNG can be up to 

70% in energy basis [2][3]. 

 

Due to its interchangeability with natural gas, the use of SNG has a number of 

advantages. SNG can be efficiently converted in a number of well-established end-use 

technologies. It can be cheaply produced at large scale, and is a storable energy carrier, 

thus enabling whole year operation independently of fluctuations in demand. 

Moreover, SNG can be injected into the existing grid and easily distributed for 

transport, heat, and electricity applications. As well as natural gas, SNG has a high social 

acceptance compared to coal [1][4][5][6]. 

 

SNG not only can be considered as an attractive, versatile energy carrier for bioenergy, 

but also can be used for storage of surplus power from renewable sources (e.g. solar, 

wind). This is the so-called “power-to-gas” concept where excess power produces H2 

that is added to an existing SNG-plant to convert additional CO2 into CH4.  

 

Addition of CO2 storage technology into the SNG process in coal-to-SNG plants is crucial 

in order to reduce its environmental footprint. Biomass-based SNG could also be 

combined with CO2 storage to further reduce emissions, even making negative CO2 

emissions possible [7].  
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1.2 SNG production from carbonaceous fuels 

Thermochemical production of SNG from coal or biomass includes the following steps: 

 

- Feedstock pre-treatment: drying, crushing, etc. 

- Gasification stage. 

- Syngas cooling, cleaning and conditioning: gas produced in the gasification 

stage must be cleaned from contaminants (sulphur compounds, nitrogen 

compounds, heavy metals, etc.), and its composition (H2/CO ratio, CO2 content) 

must be adjusted prior to the synthesis stage. 

- Methanation: syngas is converted into CH4 through an exothermic reaction. 

- SNG conditioning: in order to comply with grid requirements, SNG composition 

might be adjusted. 

 

There are several possible criteria for the classification of gasification processes. 

Depending on the method of heat supply, gasification technologies can be classified in 

direct and indirect. In direct gasification, the heat required for the endothermic 

devolatilization and gasification reactions is provided by the combustion of a fraction of 

the feedstock. On the contrary, in indirect gasification processes, gasification and 

combustion stages are physically separated, and heat is transferred between both 

reactors via a heat carrier (e.g. bed material). Indirect gasification allows the production 

of a N2-free product gas without the need for an expensive air separation unit. As a 

result, syngas contains a high concentration of CH4. These advantages make indirect 

gasification an attractive option for SNG production. In particular, ECN has developed 

the MILENA indirect gasification technology, described in more detail in section 1.5 of 

this document.   

1.3 Scope and outline of this report 

Although bioSNG is considered an interesting energy carrier, there are no operating 

plants available yet that can be used to estimate the costs of a bioSNG plant. This report 

aims to present an estimation of the costs of a large-scale plant in a future where 

bioSNG production is conventional technology. A realistic estimation of the Total Capital 

Investment (TCI) of a bioSNG plant is crucial for calculation of the bioSNG cost price. 

 

With this background, this report presents the estimation of the Total Capital 

Investment (TCI) of SNG produced from biomass from the basis of reference 

technologically large-scale commercial plants which use gasification as the first process 

step. Section 2 of this document presents the results of specific costs in USD2013/kW 

referred to a 1 GW thermal input capacity plant for each one of the reference 

technologies based on the absolute TCI of the facilities selected, and taking into account 

their different size and start-up date. The technical differences between the reference 

technologies and a bioSNG plant have been analysed and incorporated into the cost of a 

bioSNG plant in Section 3. The effect of technology learning on the TCI costs is analysed 

in Section 4. Finally, based on the estimated TCI after technical learning, a cost price for 

bioSNG is derived and discussed in Section 5. A number of appendices provides 



 

 ECN-E--14-008         12 

additional information on data and methodology used in this work, as well as on some 

reference plants. 

1.4 Methodology for TCI estimation 

There are two approaches for estimating the Total Capital Investment of a bioSNG 

plant: 

 

a) From reference data of technologically similar facilities, applying different 

factors to cope with different scale, start-up year, etc. 

 

b) Bottom-up method, where basic engineering is carried out for the plant and 

cost estimations are based on a process flow diagram, energy and mass 

balances, and quotes for major equipment.  

 

In this report, method a) has been selected for a first estimation of costs due to lower 

complexity, and to the high uncertainty of results from method b).  

Figure 1: Methodology for estimation of Total Capital Investment of a large bioSNG plant used in this 

work. 

 
 

The TCI for a large-scale and technically mature bioSNG plant has been estimated by 

using a 3-step methodology (Figure 1): 

 

 Step 1. A list of reference gasification plants has been collected from an 

extensive literature review. The following technologies have been selected for 

the study due to its maturity and commercial status: 
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- Gas to liquids (GTL). 

- Coal to liquids (CTL). 

- Coal to methanol (CTM). 

- Coal to SNG (CSNG). 

- Integrated Gasification Combined Cycle (IGCC). 

    

From the available references, only large-scale operational or under 

construction plants have been considered in order to get a realistic and 

credible estimation of costs. Moreover, a large number of references has been 

selected in order to get a realistic average value by reducing the uncertainty of 

the reported investment costs of plants. The absolute TCI of the facilities 

selected has been used to derive the specific cost in terms of USD2013/kW for a 

1 GW input capacity plant, thus taking into account the different size and   

start-up date of the facilities considered. This step is presented in section 2 of 

this report. 

 

 Step 2. The reference technologies have also been systematically compared 

with a bioSNG process in order to take into account the technical differences 

between processes, and translate them into the plant cost of a bioSNG plant. 

The procedure and results of this analysis are shown in Section 3. 

 

 Step 3. Finally, for a future projection, the TCI updated in step 2 is adjusted to 

take into account learning effects, resulting in a TCI value that can be expected 

after implementing  10 GW bioSNG capacity cumulatively (i.e., building 10 units 

of 1 GW each). The results are presented in Section 4. 

1.5 MILENA indirect gasification for SNG 

production 

For a proper comparison of the different technologies considered in this work, a layout 

for a bioSNG plant has been proposed (Figure 2). MILENA indirect gasification and OLGA 

tar removal system, technologies developed by ECN, have been selected due to the high 

potential efficiency for SNG production [3].  

Figure 2: Schematic layout of proposed bioSNG plant based on MILENA indirect gasification. 

 
 

MILENA technology (shown in Figure 3), incorporates several improvements with 

respect to existing indirect gasification concepts. Firstly, gasification and combustion 

reactors are placed in one single vessel for both reactors. This makes the system 

cheaper, easier to pressurize, and with less heat loss. Moreover, there is only a single 
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bed material circulation mass flow restriction to avoid imbalances. MILENA offers higher 

efficiency due to a minimum amount of gas/steam for the gasification reactor. The 

implementation of a settling chamber instead of cyclone for gas/bed material 

separation allows reducing start-up issues and increasing the ability to cope with flow 

disturbances. In MILENA gasification, biomass undergoes devolatilization in the riser, 

whereas the remaining char descends through the downcomer and is combusted in the 

fluidized bed. Therefore, complete conversion of the feedstock is achieved. 

 

The net overall efficiency for SNG production from MILENA indirect gasification is 

reported to be ~70% (LHV basis) [3]. MILENA gasification could be scaled up to 1 GW. 

This 10 m diameter, 20 m height reactor would be operated at a pressure of 7 bar. ECN 

is currently performing research and development activities on gas cleaning mainly 

based on catalytic removal of trace components, high temperature reforming of 

hydrocarbons, hydrogenation of unsaturated hydrocarbons and removal of sulphur and 

chlorine components. 

Figure 3: MILENA gasification technology [3]. 
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 2
TCI of reference plants 

As described in Section 1, the first step for the estimation of the Total Capital 

Investment (TCI) of a bioSNG plant is the gathering of data from literature 

corresponding to large-scale commercial gasification plants in operation or under 

construction. The reported investment of plants may vary from case to case not only 

because of differences of scale and start-up year of plants, but also due to cost 

escalations, co-production, greenfield/brownfield projects, and reporting policies. 

Therefore, in order to reduce this uncertainty and obtain a credible average value, it is 

necessary to use a large number of references.  

 

Table 1-Table 5 summarize the performance and cost data of the different facilities 

considered in this study, categorized as a function of the technology (GTL, CTL, CTM, 

CSNG, and IGCC). Each reference plant includes start-up year, plant scale, and total 

capital investment (TCI, expressed in American dollars, USD). Values of specific costs 

obtained from literature are not comparable with each other, since the plant scale and 

start-up year are different. For this reason, specific costs have been normalized to a 

plant size of 1 GW thermal input. An average value of 0.7 has been selected in this work 

for the scaling factor applied [8]. The normalized costs have also been adjusted to 

inflation. In this work, 2.65% annual inflation has been assumed, value corresponding to 

the average inflation in United States in the period 2000-2013 [9][10]. Specific 

investment costs shown in Table 1-Table 5 are thus expressed in terms of million 

USD2013/kWinput.  

Appendix A of this document summarizes the assumptions made for the calculations, 

including efficiencies of technologies, conversion factors, and formulae used for 

calculations. Appendix B reviews the state of the art of selected technologies. 

Moreover, due to the possible distortion of the calculated investment costs, neither 

biomass-to-liquids nor biomass-to-SNG facilities have been included in this analysis. 

Nevertheless, a brief review of BTL and bioSNG European projects is presented in 

Appendix C of the document.  
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Table 1: Performance and cost data of reference gas-to-liquids (GTL) plants. 

Code Project name Location 
Plant output 

(bbl/day) 

Plant output 

(GW) 

Investment 

(billion USD) 

Start-up 

date 

TCI (million USD2013/    

1 GWinput) 
Reference 

GTL.1 Petrosa, Mossel Bay GTL 
Mossel Bay, Western Cape, 

South Africa 
45 000 2.70 1.5 1992 910 

[11][12][13][14] 

[15][16][17][18] 

GTL.2 Shell Bintulu SMDS 
Bintulu, Sarawak, Borneo, 

Malaysia 
14 700 0.88 0.85 1993 1100 [19][20][21][22] 

GTL.3 
Qatar Petroleum/ Sasol, Oryx 

GTL 

Ras Laffan Industrial City, 

Qatar 
34 000 2.04 1 2006 510 

[22][23][24][25] 

[26][27][28]  

GTL.4 Shell Pearl GTL INITIAL 
Ras Laffan Industrial City, 

Qatar 
140 000 8.39 5 2003 1025 

[22][29][30][31] 

GTL.5 Shell Pearl GTL ACTUAL 
Ras Laffan Industrial City, 

Qatar 
140 000 8.39 19 2011 3160 

GTL.6 
Sasol/ Chevron/ NNPC. Escravos 

GTL INITIAL 
Lagos, Nigeria 34 000 2.04 3 2010 1380 [22][32][33][34] 

[35][36][37] 
GTL.7 

Sasol/ Chevron/ NNPC. Escravos 

GTL ACTUAL 
Lagos, Nigeria 34 000 2.04 8.4 2013 3570 

GTL.8 
Sasol/Uzbekneftegaz/Petronas 

GTL 
Qarshi, Uzbekistan 38 000 2.28 2.5 2016 - 2017 980 [38][39] 

GTL.9 Sasol, Lake Charles Lake Charles, Louisiana, USA 96 000 5.75 16 2018 - 2019 3290 
[40][41][42][43] 

[44][45] 
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Table 2: Performance and cost data of reference coal-to-liquids (CTL) plants. 

Code Project name Location 

Plant 

output 

(bbl/day) 

Plant output 

(ton/year) 

Plant 

output 

(GW) 

Investment 

(billion USD) 

Start-up 

date 

TCI (million 

USD2013/     

1 GWinput) 

References 

CTL.1 Sasol, Sasolburg CTL Sasolburg, South Africa 15 600 - 0.96 0.45 1955 1280 [46][47][48] 

CTL.2 Sasol, Secunda CTL Secunda, South Africa 160 000 - 9.29 5.7 
1980 / 

1984 1720 
[46][47][48][49] 

[50][51][52] 

CTL.3 
Shenhua Group Co. Ltd., Inner 

Mongolia CTL 
Ordos, Inner Mongolia, China - 3 200 000 4.43 2.76 2010 640 [53] 

CTL.4 
Shenhua Ningmei Group / Sasol 

Synfuels, Ningxia Hui CTL Plant 

NingDong chemical base, Ningxia, 

China 
80 000 3 200 000 4.65 8.7 2010 1950 

[53][54][55][56] 

[57][58] 

CTL.5 
Shenhua Direct Coal Liquefaction 

Project 
Ordos, Inner Mongolia, China 24 000 - 1.39 1.5 2008 820 

[53][58][59][60][61] 

[62][63][64][65] 

CTL.6 
Yankuang Shaanxi Future Energy 

Chemical Co., Ltd. 
Yulin, Shaanxi, China - 1 000 000 1.38 2.4 2013 1160 [53][58][66][67][68] 

CTL.7 Yi'tai Group Ganquanpu or Yili, Xinjiang, China - 5 400 000 7.47 10.3 2013 1530 [53][58] 

CTL.8 American Lignite Energy CTL 
McLean county, North Dakota, 

USA 
32 000 - 1.86 4 - 1570 [69][70] 

CTL.9 Fox Creek CTL Fox Creek, Alberta, Canada 40 000 - 2.32 4.5 2014 -15 1510 [71][72][73][74] 

CTL.10 H&WB CTL Facility Bataan, Philippines 60 000 - 3.48 2.8 2013 710 [75][76] 

CTL.11 Likuen Coal Liquefaction Project 

La Guajira / Santander / 

Cundinamarca and Boyacá, 

Colombia 

50 000 - 2.90 2 2013 580 [77][78][79] 
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Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants. 

Code Project name Location 
Plant output 

(ton/year) 

Investment  

(billion USD) 

Start-up 

date 

TCI (million 

USD2013/                  

1 GW input) 

References 

CTM.1 Durban Methanol Plant Sasolburg, South Africa 140 000 0.021 1998 110 [48][80][81]  

CTM.2 Air Products Kingsport Methanol Plant USA, Kingsport, Tennessee 96 000 0.21 1997 1495 [82][83] 

CTM.3 Henan Kiaxiang Complex Yima, Henan, China 400 000 0.26 2008 510 [53][84][85][86][87] 

CTM.4 Dongneng Chemical Hulunbeier, Inner Mongolia, China 200 000 0.15 2008 490 [53][88]  

CTM.5 Sinopec, Puyang Chemical Plant Puyang, Henan, China 600 000 0.24 2008 355 [53] 

CTM.6 Jinye Group Gujiao, Shanxi, China 300 000 0.15 2009 350 [53][89] 

CTM.7 Jiangsu Sopo Group Zhenjiang, China 540 000 0.33 2009 510 [90] 

CTM.8 
Shanxi Qinpeng Coal Science Development Co,, 

Ltd, 

Yangcheng County, Jincheng, 

Shanxi, China 
200 000 0.31 2009 960 [53] 

CTM.9 Xinsheng Coal Chemical Corp Yuncheng, Shanxi, China 200 000 0.085 2009 260 [53] 

CTM.10 Asia New-Energy (Xinyang) Holdings Pte, Ltd Xinyang, Henan, China 300 000 0.46 2009 1080 [53] 

CTM.11 China Gas/Shanxi Tiancheng Dayang Fenyang, Shanxi, China 400 000 0.431 2010 800 [53] 

CTM.12 China Oceanwide Holdings Group Baotou, Inner Mongolia, China 1 800 000 3.7 2010 2410 [53][91][92][93][94] 

CTM.13 Jingde Energy & Chemicals Co,, Ltd Xingyi, Guizhou, China 600 000 0.54 2010 760 [53][95] 

CTM.14 Datang International Power Generation Co,, Ltd Duolun County, Inner Mongolia 1 680 000 2.97 2010 2030 [53][96][97] 

CTM.15 SES/Golden Concord Energy Xilinguole, Inner Mongolia,China 225 000 0.12 2010 335 [53][98] 

CTM.16 Shaanxi Provincial Investment Group Co, Xianyang, Shaanxi, China 600 000 0.44 2010 620 [53][99][100][101] 

CTM.17 Shenhua Group Baotou, Inner Mongolia, China 1 800 000 2.8 2010 1820 
[53][58][97][102] 

[103][104][105]  
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Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants (continued). 

Code Project name Location 
Plant output 

(ton/year) 

Investment  

(billion USD) 

Start-up 

date 

TCI (million 

USD2013/1 GWinput) 
References 

CTM.18 Shenhua Ningmei Group NingDong, Ningxia, China 1 670 000 2.8 2010 1920 
[53][58][97][106] 

[107][109][110] 

CTM.19 Xishan Coal Electricity Group/Shilin Chemical Ordos, Inner Mongolia, China 300 000 0.19 2010 430 [53][111] 

CTM.20 Wei-he Coal Chemical Group Weinan, Shaanxi, China 400 000 0.53 2010 990 [53][112][113] 

CTM.21 Shenhua Ningmei Group NingDong, Ningxia, China 600 000 0.41 2010 580 [53] 

CTM.22 Huating Zhongxu Coal Chemical Corp. Huating, Gansu, China 600 000 0.44 2010 620 
[53][114][115][116] 

[117] 

CTM.23 
Shaanxi Yanchang Petrochemical Xinghua 

Company 
Xingping, Shaanxi, China 300 000 0.75 2011 1670 [53][118] 

CTM.24 Guizhou Jinyuan Group / Chitianhua Group Tongzi, Guizhou, China 300 000 0.65 2012 1410 [53][119][120][121] 

CTM.25 Fengfeng Group Handan, Hebei, China 1 000 000 2.61 2008 2700 [53][122] 

CTM.26 Chongqing Wansheng Coal Chemical Co., Ltd. Chongqing, China 300 000 0.44 2013 930 [53] 

CTM.27 Bohai Chemical Industry Group Corporation Tianjin, China 500 000 1.93 2014-15 2850 [53] 

CTM.28 

Chia Tai Energy Chemical Group/Shaanxi Coal 

Chemical Group/Shaanxi Provincial Investment 

Group/Shaanxi Xinxing Coal Chemical 

Yulin, Shaanxi, China 1 800 000 3.19 - 1920 [53] 

CTM.29 Chongqing Kabeile Chemicals Chongqing, China 850 000 0.39 2012 410 [53][123][124] 

CTM.30 Daban Coal Chemical Corp. Chifeng, Inner Mongolia, China 300 000 0.97 2012 2100 [53] 

CTM.31 East Hope Group Wansheng, Chongqing, China 200 000 0.43 2010 1300 [53][125][126][127] 

CTM.32 Guizhou Shuicheng Coal Mining (Group) Co., Ltd Liupanshui, Guizhou, China 200000 0.26 2011 770 [53][128][129][130] 
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Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants (continued). 

Code Project name Location 
Plant output 

(ton/year) 

Investment  

(billion USD) 

Start-up 

date 

TCI (million  

USD2013 /            

1 GW input) 

References 

CTM.33 Hangtian Huayuan Chemicals Corp. Shuangyashan, Heilongjiang, China 300 000 0.24 2011 530 [53] 

CTM.34 Hemei Group Hebi, Henan, China 600 000 0.58 2010 815 [53] 

CTM.35 Huaneng Hulunbeier Energy Development Co Ltd. Manzhouli, Inner Mongolia, China 600 000 0.67 2010 940 [53][131] 

CTM.36 HuaYi Group/Yili Resources Ordos, Inner Mongolia, China 1 200 000 0.24 2011 200 [53] 

CTM.37 Inner Mongolia Donghua Energy Co., Ltd. Ordos, Inner Mongolia, China 600 000 0.57 - 740 [53][132][133] 

CTM.38 Jizhong Energy Fengfeng Group/Luneng Group Xilinguole, Inner Mongolia, China 1 200 000 4.21 - 3370 [53][134][135] 

CTM.39 Liye Tianfu Energy Co., Ltd. Shihezi, Xinjiang, China 300 000 0.22 2011 490 [53][136] 

CTM.40 Shanghai Huayi Group, Anhui Huayi Chemicals Co. Wuwei county, Anhui, China 600 000 1.19 2012 1590 [53][137][138][139] 

CTM.41 
Ningxia Baota Petrochemicals/Huadian Power 

International Corporation Limited 
NingDong, Ningxia, China 600 000 0.33 - 430 [53] 

CTM.42 Northwest Energy & Chemicals Co., Ltd. Ordos, Inner Mongolia, China 300 000 0.98 - 2070 [53] 

CTM.43 Pucheng Clean Energy Chemical Co. Ltd. Weinan, Shaanxi, China 1 800 000 2.92 2013 1760 [53][140][141] 

CTM.44 
Shaanxi Yanchang Petroleum Group Yulin Coal 

Chemical Co., Ltd. 
Yulin, Shaanxi, China 600 000 0.86 2011 1180 [53][142] 

CTM.45 
Shaanxi Yulin Natural Gas Chemical Industry Co., 

Ltd. 
Yulin, Shaanxi, China 600 000 0.66 2011 900 [53][143] 

CTM.46 Shandong Xinwen Mining Group Co., Ltd. Xilinguole, Inner Mongolia, China 300 000 0.33 - 700 [53] 

CTM.47 Shanxi Huayun Coal Electricity Co., Ltd. Lvliang, Shanxi, China 600 000 0.86 2012 1150 [53][144] 

CTM.48 Shenhua Group Hulunbeier, Inner Mongolia, China 1 800 000 2.61 - 1570 [53] 
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Table 3: Performance and cost data of reference coal-to-methanol (CTM) plants (continued). 

Code Project name Location 
Plant output 

(ton/year) 

Investment  

(billion USD) 

Start-up 

date 

TCI (million 

USD2013/1 GWinput) 
References 

CTM.49 Shenhua Group Yulin, Shaanxi, China 1 800 000 1.42 - 855 [53] 

CTM.50 Town Star Industry Linfen, Shanxi, China 200 000 0.09 - 250 [53][145] 

CTM.51 Shenhua Group 
Urad Middle Banner, Inner 

Mongolia, China 
480 000 1.53 

2012-

2013 2320 [146] 

CTM.52 Xinjiang Guanghui Industry Co., Ltd. Yiwu County, Xinjiang, China 1 200 000 1.81 2011 1520 [53][147][148][149] 

CTM.53 Yongmei Zhongxin Chemical Corp. Xinxiang, Henan, China 250 000 0.49 2011 1240 [53] 

CTM.54 Yunnan Pioneer Chemical Co., Ltd. Xundian County, Kunming, China 500 000 0.735 2012 1110 [53] 

CTM.55 Zhongtian Hechuang Energy Co., Ltd. Ordos, Inner Mongolia, China 4 200 000 7.02 2012 2400 [53] 

CTM.56 
Yankuang Group/ Xinjiang Energy & Chemical 

Corp. 
Urumqi, Xinjiang, China 300 000 0.82 2011 1820 [53] 
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Table 4: Performance and cost data of reference coal-to-SNG (CSNG) plants. 

Code Project name Location 
Plant output 

(bcm/y) 

Plant output 

(GW) 

Investment 

(billion USD) 

Start-up 

date 

TCI (million 

USD2013/            

1 GW input) 

References 

CSNG.1 Great Plains Synfuels plant North Dakota, USA 1.53 1.70 2.1 1984 2160 [6][150][151]  

CSNG.2 CPIC / Shandong Xinwen Mining Group Yili, Xinjiang, China 6 6.66 4.41 2014 800 [53][97] [151][152] 

CSNG.3 Datang Energy Chemicals Corp. Fuxin, Liaoning, China 4 4.44 4.02 2013 990 [53][151][153] 

CSNG.4 Datang Group/ Beijing Gas Group/Tianjing Jinneng Chifeng, Inner Mongolia, China 4 4.44 4.2 2012 1060 [53][151][154] 

CSNG.5 Datang International Power Generation Co., Ltd. 
Kesheketeng Qi, Inner Mongolia, 

China 
4 4.44 3.76 2012 950 [53][151][154] 

CSNG.6 Huineng Coal Chemical Co., Ltd. Ordos, Inner Mongolia, China 2 2.22 2.21 2013 880 [53][151][154] 

CSNG.7 Shenhua Group Co., Ltd. Ordos, Inner Mongolia, China 2 2.22 2.29 2014 890 [53][154] 

CSNG.8 Xinjiang Guanghui Industry Co., Ltd. Yiwu county, Xinjiang, China 0.5 0.55 1.47 2011 1640 [53][148][155][156] 

CSNG.9 CPIC Yili, Xinjiang, China 6 6.66 4.57 2012 870 [53][151]  

CSNG.10 China Huaneng Group Changji, Xinjiang, China 1.3 1.44 1.12 2013 610 [53][148] 

CSNG.11 Yili Xintian Coal Chemical Co., Ltd. Yili, Xinjiang, China 2 2.22 1.96 2013 780 [152] 

CSNG.12 China Guodian Corporation Xing'an, Inner Mongolia, China 2 2.22 2.12 2014 830 [53][151]  

CSNG.13 Qinghua Group Yining County, Yili, Xinjiang, China 1.3 1.44 0.82 2012 460 [53][152][156]  

CSNG.14 Shendong Tinanlong Group Changji, Xinjiang, China 1.3 1.44 1.12 2013 610 [53] 

CSNG.15 China Huadian Corporation Changji, Xinjiang, China 4 4.44 4 - 985 [53] 

CSNG.16 Xinjiang Guanghui Group Aletai, Xinjiang, China 4 4.44 3.27 2013 810 [53] 

CSNG.17 CNOOC, Datong Coal Mine Group Company Datong, Shanxi, China 4 4.44 4.9 2013 1210 [53][151][157] 
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Table 5: Performance and cost data of reference Integrated Gasification Combined Cycle (IGCC) plants. 

Code Project name Location 
Power output 

(MW) 

Investment 

(billion USD) 

Start-up 

date 

TCI (million 

USD2013/1 GWinput) 
References 

IGCC.1 Nuon Buggenum 
Haelen, Limburg, The 

Netherlands 
253 0.443 1994 1060 

[158][159][160][161][162] 

[163][164][165][166] 

IGCC.2 Wabash River Power Station Terre Haute, Indiana, USA 262 0.438 1995 940 
[158][159][161][165] 

[166][167][168][169] 

IGCC.3 Sokolovska Uhelna AS, Vresova IGCC Vresova, Czech Republic 351 0.440 1996 800 
[158][159][161][165][166] 

[170][171][172][173][174] 

IGCC.4 
Tampa Electric Company, Polk Power 

Station 
Tampa, Florida, USA 250 0.448 1996 990 

[158][159][161][165] 

[166][175][176][177] 

IGCC.5 Elcogas 
Puertollano, Ciudad Real, 

Spain 
310 0.996 1998 1820 

[158][159][161][165] 

[166][178][180][181] 

IGCC.6 Duke Energy Edwardsport, Indiana, USA 618 3.55 2013 2620 
[182][183][184][185][186] 

[187][188][189][190] 

IGCC.7 

Southern Company Services / 

Mississippi Power Kemper County 

IGCC 

Kemper County, Mississippi, 

USA 
582 2.9 2014 2170 [158][159][161] 
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Results of updated specific costs in terms of USD2013/kW for a 1 GW input plant are 

shown in Figure 4 to Figure 8.   

Figure 4: Specific TCI costs for gas-to-liquids (GTL) plants translated to 2013-USD and normalized to        

1 GW input scale. 

 
In Figure 4 it can be observed that plants GTL.5 (Shell’s Pearl), GTL.7 (Sasol’s Escravos), 

and GTL.9 (Sasol’s Louisiana), highlighted with red stripes, show dramatically higher 

investment costs than other plants such as Mossel Bay (GTL.1), Shell’s Bintulu (GTL.2) or 

Shell’s Oryx (GTL.3). Despite the high interest and recent developments in GTL industry, 

progress has been restrained by the huge cost of building GTL plants, due to cost 

overruns, as well as by the swing in the price of oil [22][37]. Even though it has been 

reported that a 35000 bbl/day GTL plant can cost about 1 billion USD [37], reality has 

shown cost escalations in some commercial plants. It is generally accepted that such 

escalation is an over-reaction forced by constraints in materials availability and 

engineering capacity [191]. GTL plants have to compete for scarce engineering talent 

and raw materials such as high-strength corrosion resistant steels with the enormous 

number of LNG projects launched over the last ten years. Engineering and construction 

costs for oil and gas exploration and production projects rose 41% between early 2006 

and early 2009. The result has been a high pressure on the relatively scarce engineering 

companies and suppliers capable of delivering advanced GTL plants on this sort of scale 

[37]. It is expected that escalations will re-dress itself in the next few years, but it is 

unlikely to return to the low investment costs such as those at the Sasol ORYX project in 

2002 [191].  

 

In 2003, before construction began, the project cost of the Shell’s Pearl Project (GTL.4 

and GTL.5 in Table 1) was estimated at 5 billion USD. However, the real costs of this 

project are much higher, up to 18-19 billion USD, which is about four times the original 

estimate. Chevron and Sasol’s Escravos plant (GTL.6 and GTL.7 In Table 1) has seen even 

worse cost inflation, and is years behind schedule. This 34000 bbl/day plant was initially 

budgeted at 3 billion USD. the cost of project had escalated to 8.4 billion USD. As for the 
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case of the Louisiana GTL project (GTL.9 in Table 1), cost has already jumped up to       

16 billion USD from the initial estimate of  8 billion USD. The high price tag of GTL plants 

is largely due to capital costs of building GTL facilities. Even with the 2 billion USD tax 

credits and other incentives from the state of Louisiana, the final cost of the project 

may be higher [192]. 

Figure 5: Specific TCI costs for coal-to-liquids (CTL) plants translated to 2013-USD and normalized to      

1 GW input scale. 

 

Figure 6: Specific TCI costs for coal-to-methanol (CTM) plants translated to 2013-USD and normalized to 

1 GW input scale. 
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It is worth noticing in Figure 7 that there are two specific cases far from the average. In 

these cases (corresponding to the Great Plains plant and the Xinjiang Guanghui 

facilities, respectively), the higher investment costs might be explained by the                  

co-production of other chemicals (see Section D.3 in Appendix D for the description of 

the Great Plants SNG facility). 

Figure 7: Specific TCI costs for coal-to-SNG (CSNG) plants translated to 2013-USD and normalized to      

1 GW input scale. 

 

Figure 8: Specific TCI costs for Integrated Gasification Combined Cycle (IGCC) plants translated to    

2013-USD and normalized to 1 GW input scale. 
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The average values of the specific TCI costs in terms of USD2013/kW for a 1 GW thermal 

input plant are summarized in Table 6 and Figure 9. As can be seen, GTL is the 

technology with highest average specific investment costs (~1800 USD2013/kW input) 

and highest deviation of values. Moreover, literature values for GTL investment costs 

are significantly lower than the actual ones. The reason of the discrepancy and the high 

dispersion of data values is the effect of  cost escalations, discussed previously in this 

section. On the contrary, coal-to-SNG technology shows the lowest average                    

(~ 970 USD2013/kW input) and standard deviation values. In this study, the average 

values will be used, not excluding any of the input values. This is assumed to be the 

most reliable estimation for the estimation of the TCI of a large scale bioSNG plant. 

Table 6: Summary and comparison of average values of TCI of reference plants. 

Technology TCI (USD2013/kWinput) 
Comparison with 

literature references  
TCI (USD2013/kWinput) 

GTL 1770 

551.4  [193] 

627.5 [194] 

428.5 [22] 

CTL 1220 1286  [195] 

CTM 1160 - 

CSNG 970 - 

IGCC 1490 1184 – 1714 [196] 

Values shown are the input for the next step in the cost estimation of a large-scale 

bioSNG plant, analysed in Section 3 of this document. 

Figure 9: Summary of average values and standard deviation for the specific TCI of reference plants 

translated to 2013-USD and normalized to 1 GW input scale. 
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 3
Normalized equipment cost 

of a bioSNG plant 

The cost-share of each main process block of the reference plants is compared with the 

main process blocks (e.g. gasification island, or gas cleaning) of a bioSNG plant. As 

mentioned in the introduction, the reference plants are GTL, CTL, CTM, CSNG, and IGCC. 

The difference in the level of technical complexity gives an estimation of the cost 

difference in these process blocks.  

 

For each reference plant, the system layout is briefly described and a simplified process 

flow diagram is provided. The differences in terms of components and equipment    

cost-share of these components are given in a separate table. All equipment or Inside 

Battery Limits (ISBL) costs of the reference plants have been normalized at 100 units. 

The division of cost shares of the different equipment is different for each case. This 

analysis results in the relative equipment cost for a bioSNG plant.  

 

In order to perform a rigorous, consistent analysis, the following units have been 

considered in each one of the cases studied: 

 

A. Air separation unit. 

B. Gasifier island. This includes feedstock pre-treatment and feeding, gasifier and 

syngas cooling.  

C. Syngas cleaning and conditioning (tar removal, acid gas removal, adjustment of 

composition, compression). 

D. Synthesis and product upgrading. This unit is not applicable to IGCC plants. 

E. Steam plant / power block (only applicable to IGCC plants). Also including plant 

balance. 
 

The configuration of biomass-to-SNG used in this work for the analysis, based on 

MILENA indirect gasification and OLGA tar removal, has been described in section 1.5 of 

this document. 
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3.1 Gas-to liquids vs. biomass-to-SNG 

A simplified layout of a GTL plant is shown in Figure 10. More details on the ORYX GTL 

plant as an example of the technology can be found in Section D.1 of Appendix D. 

Figure 10: Schematic layout of a gas-to-Liquids plant 

 
 

Table 7 summarizes the cost-share differences of a GTL plant with a bioSNG plant.  

3.2 Coal-to-liquids vs. biomass-to-SNG 

For the analysis presented in this work, CTL process based on gasification of the solid 

feedstock and subsequent Fischer-Tropsch synthesis  has  been considered. Figure 11 

plots a simplified configuration of a CTL process. 

Figure 11: Simplified layout of a coal-to-liquids plant. 

 
 

In principle, coal-to-liquid plants show a number of similar features as compared to SNG 

production. Both processes use gasification of a solid material, contain extensive 

cleaning of the syngas produced (e.g. sulphur, CO2), and include a catalytic process 

(methanation vs. Fischer Tropsch) in the end. More details on an example of CTL facility 

(Sasol Synfuels plant in Secunda, South Africa, see CTL.2 in Table 2) can be found in 

Appendix D of the document.  

 

Table 8 summarizes the comparison of the distribution of investment costs of a CTL and 

a bioSNG plant. 
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Table 7: Comparison of cost distribution of gas-to-liquids and biomass-to-SNG plants. 

Main equipment 

blocks 

Cost  GTL plant 

[% of ISBL] [21] 
Gas-to-liquids vs. biomass-to-SNG 

Relative cost of 

biomass-to-SNG 

plant 

[% of ISBL 

compared to GTL] 

A. Air separation 

unit 
25 

Not required in the bioSNG plant because of the 

use of indirect gasification. 
0 

B.  Gasifier island 32 

- Biomass pre-treatment: grinding and drying. 

Lock hoppers required for pressurized feeding 

into the gasifier. 

- Natural gas pre-treatment: removal of liquid 

hydrocarbons, sulphur compounds (H2S, COS, 

mercaptans), heavy metals, etc. 

- Gasifier: bioSNG concept uses MILENA indirect 

gasification. GTL uses steam reforming /partial 

oxidation/autothermal reforming. Partial 

oxidation and autothermal reforming require 

the use of oxygen, which imposes more strict 

requirements to materials. Steam reforming 

operates at high pressures, and requires of 

catalysts. 

- Operating temperature: MILENA indirect 

gasification operates at lower temperatures 

(700-900°C) than partial oxidation                

(1300-1500°C). This makes the material 

requirements less stringent, and simplifies the 

design (less refractory). 

- Operating pressure: MILENA indirect 

gasification operates up to 7 bar (due to limited 

possible solid circulation). Partial oxidation units 

can operate at higher pressures (up to 70 

bar).Therefore, for the same output, MILENA 

equipment has a larger size, and is thus more 

expensive.  

45 

C. Syngas 

cleaning and 

conditioning 

0 

- BioSNG plant: physical tar removal (OLGA 

system), HDS, adjustment of H2/CO ratio via 

WGS, acid gas removal (e.g. amine scrubbing 

unit + adsorption bed). More compression 

requirements and larger equipment size, 

because of the lower operating pressure of the 

MILENA gasifier (up to 7 bar). 

- GTL plant: Syngas cleaning not required. 

 50 

D. Synthesis and 

product 

upgrading 

43 

- Synthesis: Fischer-Tropsch and methanation 

reactors operate at similar pressures (20-30 bar) 

and temperatures ~ 300°C.  However, F-T unit 

adds complex recycler and reformer, which 

moreover increases flow, and thus equipment 

size. 

- Product upgrading: Complex and costly 

upgrading of F-T crude. SNG upgrading is 

relatively easy (adjustment of Wobbe index and 

pressure). 

25 

Total ISBL 100  120 
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Table 8: Comparison of cost distribution of coal-to-liquids and biomass-to-SNG plants. 

Main equipment 

blocks 

Cost  coal-to-

liquids plant 

[% of ISBL] 

[197][198]  

Coal-to-liquids vs. biomass-to-SNG 

Relative cost of 

biomass-to-SNG 

plant 

[% of ISBL 

compared to 

CTL] 

A. Air separation 

unit 
10 

ASU is not required in the biomass-to-SNG case 

because of the use of indirect gasification. 
0 

B. Gasification 

island 
26  

- Pre-treatment and feeding: Grinding and drying 

of biomass is more costly than for coal (biomass 

has a relatively high moisture content, and is 

fibrous). In both cases, lock hoppers are required 

for pressurized  feeding into the gasifier. 

- Gasifier: biomass-to-SNG concept uses MILENA 

indirect gasification. CTL uses fixed-bed 

gasification (Sasol). The latter requires the use of 

oxygen, which poses more strict requirements to 

materials. 

- Operating temperature: MILENA indirect 

gasification operates at lower temperatures 

(700-900°C) than oxygen-blown gasification. This 

makes the material requirements less stringent, 

and simplifies the design (less refractory  

required). 

- Operating pressure: MILENA indirect 

gasification (bioSNG)  operates up to 7 bar (due 

to limited possible solid circulation). Lurgi fixed-

bed gasification (CTL) operates at ~ 24 bar. 

Therefore, for the same output, MILENA 

equipment has a larger size, and thus more 

expensive.  

45 

C. Syngas 

cleaning and 

conditioning 

22 

- Tar removal: physical tar removal (OLGA 

system) and recirculation of tar to gasifier in 

bioSNG plant. Condensation and further 

processing for extraction of phenol and other 

products in CTL. 

- Adjustment of H2/CO ratio: similar in both 

cases (WGS unit). 

- Acid gas removal: CTL plants use complex, 

costly physical absorption (e.g. Rectisol) for CO2 

and contaminants removal. Biomass-to-SNG 

concept might use less costly amine scrubbing 

unit + adsorption bed for CO2 and H2S removal. 

- Compression: more compression requirements 

and larger equipment size in bioSNG plant, 

because of the lower operating pressure of the 

MILENA gasifier (up to 7 bar). 

45 

D.  Synthesis and 

product 

upgrading 

32 

-Synthesis: F-T and methanation reactors 

operate at similar pressures and temperatures. 

However, F-T unit adds complex recycler and 

reformer, which increases flow, and thus 

equipment size. 

-Product upgrading of F-T crude requires 

complex and costly equipment. On the contrary, 

SNG upgrading is relatively easy (adjustment of 

Wobbe index, compression). 

15 

Total ISBL 100  105 
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3.3 Coal-to-methanol vs. biomass-to-SNG 

Figure 12 shows a simplified configuration of methanol synthesis. The process consists 

of gasification of coal. Syngas produced is cleaned and conditioned prior to methanol 

synthesis. Products from synthesis stage are separated and upgraded in order to comply 

with the product methanol requirements. 

 

Figure 12: Schematic layout of a coal-to-methanol plant. 

 
 

 

Table 9 summarizes the comparison of cost distribution of coal-to-methanol and 

biomass-to-SNG plants. 
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Table 9: Comparison of cost distribution of coal-to-methanol and biomass-to-SNG plants. 

Main equipment 

blocks 

Cost  CTM plant 

[% of ISBL] 

[197][199] 

Coal-to-methanol vs. biomass-to-SNG 

Relative cost of 

bioSNG plant 

[% of ISBL 

compared to 

CTM] 

A. Air separation 

unit 
20 

ASU not required in bioSNG plant because of the 

use of indirect gasification. 
0 

B.  Gasification 

island 
31  

- Feedstock pre-treatment and feeding: Grinding 

and drying of biomass is more costly than for 

coal. In both cases, lock hoppers required for 

pressurized feeding into the gasifier. 

- Gasifier: biomass-to-SNG concept uses MILENA 

indirect gasification. CTM uses fixed-bed or 

entrained-flow gasification. Both require the use 

of oxygen, which poses more strict requirements 

to materials. 

-Operating temperature: MILENA indirect 

gasification operates at lower temperatures 

(700-900°C) than oxygen-blown gasification. This 

makes material requirements less stringent, and 

simplifies the design (less refractory / no 

membrane walls required). 

-Operating pressure: MILENA indirect 

gasification operates up to 7 bar (due to limited 

possible solid circulation). Fixed-bed / entrained-

flow gasifiers can operate at much higher 

pressures, which leads to more compact 

equipment, and thus to cost savings in 

construction materials. Therefore, for the same 

output, MILENA equipment has a larger size, and 

is thus more expensive. 

45 

C.  Syngas 

cleaning and 

conditioning 

27 

- Tar removal: physical tar removal (OLGA) and 

recirculation of tar to gasifier in bioSNG. 

Condensation and further processing for 

extraction of phenol and other products in CTL. 

- Adjustment of H2/CO: similar (WGS unit). 

- Acid gas removal: CTL plants use complex, 

costly physical absorption (e.g. Rectisol) for CO2 

and contaminants removal. Biomass-to-SNG 

might use less costly amine scrubbing unit + 

water scrubbing + adsorption bed. Upstream 

HDS required in the bioSNG concept. 

- Compression: more compression requirements 

and larger equipment size in bioSNG plant, 

because of the lower operating pressure of 

MILENA (up to 7 bar). 

50 

D.  Synthesis and 

product 

upgrading 

22 

- Synthesis: Due to the most stringent pressure 

conditions of methanol synthesis (50-70 bar) and 

gas recycle, cost of methanol synthesis unit 

expected to be slightly higher than methanation 

reactor (~ 30 bar). 

-Product upgrading: Both upgrading of methanol 

(distillation), and of SNG (adjustment of Wobbe 

index, compression) are relatively simple. 

Therefore, costs are assumed to be in a similar 

range. 

20 

Total ISBL 100  115 
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3.4 Coal-to-SNG vs. biomass-to-SNG 

The coal-to-SNG plant, in principle, can be considered similar to a bioSNG plant. A 

generic, conventional SNG facility from coal gasification, shown in Figure 13, is 

composed by the following units: 

 

- Gasifier (the most usual technologies used for large-scale coal 

gasification are fixed-bed and entrained-flow gasification).  

- Cooling and tar removal. 

- Sour water-gas shift (WGS) for adjustment of H2/CO ratio.  

- Acid gas removal unit (e.g. Rectisol, Selexol).  

- Methanation unit. 

- SNG conditioning: water and CO2 removal, cooling and compression. 

 

A detailed description of an example of commercial CSNG plant (Great Plains Synfuels, 

CSNG.1 in Table 4)  can be found in Section D.3 of Appendix D of this document. 

Figure 13: Simplified configuration of a coal-to-SNG plant. 

 

Comparison analysis is presented in Table 10. 
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Table 10: Comparison of cost distribution of coal-to-SNG and biomass-to-SNG plants. 

Main equipment 

blocks 

Cost  of  CSNG 

plant 

[% of ISBL] 

[197] 

Coal-to-SNG vs. biomass-to-SNG 

Relative cost of 

bioSNG plant 

[% of ISBL 

compared to 

CSNG] 

A. Air separation 

unit 
11 

ASU is not required in the biomass-to-SNG case 

because of the use of indirect gasification. 
0 

B.  Gasification 

island 
31 

- Feedstock pre-treatment: Grinding and drying 

of biomass is more costly than for coal. In both 

cases, lock hoppers are required for pressurized 

feeding. 

- Gasifier: biomass-to-SNG concept uses MILENA 

indirect gasification. CSNG uses fixed-bed or 

entrained-flow gasification (e.g. Lurgi fixed-bed 

gasification in the Great Plains Synfuels plant).  

Both require the use of oxygen, which poses 

more strict requirements to materials. 

- Operating temperature: MILENA indirect 

gasification operates at lower temperatures 

(700-900°C) than O2-blown gasification        

(1200-1500°C). This makes the material 

requirements less stringent, and simplifies the 

design (less refractory /no membrane walls 

required). 

- Operating pressure: MILENA indirect 

gasification operates up to 7 bar (due to limited 

possible solid circulation). CSNG gasifier 

operates at ~30 bar (Great Plains plant). 

Therefore, for the same output, MILENA 

equipment has a larger size, and thus more 

expensive.  

45 

C.  Syngas 

cleaning and 

conditioning 

16 

- Tar removal: physical tar removal (OLGA) and 

tar recirculation to gasifier in bioSNG plant. Tar 

condensation and separation/recovery of 

products (e.g. phenol, cresylic acid) in CSNG. The 

latter option is considered more complex. 

- Acid gas removal: coal-to-SNG uses costly 

physical absorption processes (e.g. Rectisol). 

Biomass-to-SNG concept might use less costly 

processes (e.g. water scrubbing + amine 

scrubbing unit + adsorption bed) for CO2 and H2S 

removal. BioSNG concept adds HDS prior to acid 

gas removal. 

- Adjustment of H2/CO ratio: similar in both 

cases (WGS unit). 

- Compression: more compression requirements 

and larger equipment size in bioSNG plant, 

because of the lower operating pressure of the 

MILENA gasifier (up to 7 bar). 

45  

D.  Synthesis and 

product 

upgrading 

42 

- Synthesis: Similar technology. Biomass-to-SNG 

process might be slightly less costly due to the 

higher CH4 content of syngas, which results in a 

smaller methanation plant and ideally no gas 

recycle for temperature control. 

- Product upgrading: similar (same specifications 

for pipeline injection). 

40 

Total ISBL 100  130 
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3.5 Integrated gasification combined cycle vs. 

biomass-to-SNG 

Results of the comparison of distribution costs between a reference IGCC plant and a 

biomass-to-SNG process are summarized in Table 11. More details on an example of 

commercial IGCC plant (Elcogas, IGCC.5 in Table 5) can be found in Section D.4 of 

Appendix D. 

Table 11: Comparison of cost distribution of IGCC and biomass-to-SNG plants. 

Main equipment 

blocks 

Cost  of  IGCC 

plant 

[% of ISBL] 

[200] 

IGCC vs. biomass-to-SNG 

Relative cost of 

bioSNG plant 

[% of ISBL 

compared to 

IGCC] 

A. Air separation 

unit 
12 

ASU not required in bioSNG plant (indirect 

gasification). 
0 

B.  Gasification 

island 
26 

- Feedstock pre-treatment: Grinding and drying 

more costly for biomass than for coal. Lock 

hoppers required in both cases for pressurized 

feeding. 

- Gasifier: MILENA indirect gasification for 

bioSNG plant. Entrained-flow gasification in IGCC 

plant. The latter requires the use of oxygen 

(more strict material requirements). 

- Operating temperature: lower temperatures in 

MILENA (700-900°C) than entrained-flow 

gasification (1200-1500°C). Less stringent 

material requirements and less complex design 

in bioSNG plant.  

- Operating pressure: up to 7 bar in MILENA. 

~25-30 bar in IGCC plant. Therefore, MILENA 

equipment has a larger size and is more 

expensive. 

40 

C.  Syngas 

cleaning and 

conditioning 

8 

- Tar removal: OLGA tar removal and 

recirculation of tars to gasifier in bioSNG plant. 

Tar condensation in IGCC (no products recovery, 

less complex).  

- Acid gas removal: less stringent specifications 

of syngas for IGCC applications than for 

synthesis. Therefore, gas cleaning is less severe, 

and less costly cleaning systems (e.g. amine 

scrubbing) can be used. BioSNG plant can also 

use amine scrubbing, but previous HDS is 

required. 

- Adjustment of H2/CO: not required in IGCC. 

- Compression: More compression requirements 

and larger equipment size in bioSNG due to 

lower operating pressure of MILENA gasifier. 

40 

D.  Synthesis and 

product 

upgrading 

N.A. 
BioSNG plant: Methanation at 30 bar and 300°C. 

SNG upgrading relatively easy. 
30 

E.  Steam plant / 

power block 
54 

 IGCC plant: steam turbine, heat recovery steam 

generator (HRSG), and gas turbine.  
N.A. 

Total ISBL 100  110 
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3.6 Results on normalized equipment cost 

Results of the analysis performed in the previous sections of this chapter are 

summarized in Table 12. Differences between costs of biomass-to-SNG process and 

reference plants are displayed. As can be seen, based on the analysis proposed in this 

work, biomass-to-SNG ranges from +5% to +30% compared to the selected commercial 

reference technologies. 

 

Table 12: Summary of estimated change in equipment cost for a biomass-to-SNG plant compared to 

reference plants.  

Reference plant 
Estimated cost difference 

for biomass-to-SNG plant 

GTL + 20 % 

CTL + 5% 

CTM + 15% 

CSNG + 30% 

IGCC + 10% 
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 4
Total Capital Investment for 

a bioSNG plant 

In Section 2, an average total capital investment (TCI) for each reference technology 

based on costs of commercial plants was determined. In this chapter, technical 

differences between processes quantified in Section 3 are applied to the TCI estimated. 

Results are summarized in Table 13.  

Table 13: Average TCI of a 1 GW biomass-to-SNG plant.  

Reference 

plant 

Average TCI 

(USD2013/kWinput) 

Estimated cost 

difference respect to 

bioSNG plant 

Average TCI of 

bioSNG plant  

(USD2013/ kWinput) 

GTL 1770 + 20 % 2120 

CTL 1220 + 5% 1280 

CTM 1160 + 15% 1330 

CSNG 970 + 30% 1260  

IGCC 1490 + 10% 1640 

AVERAGE 1530  

 

 

Therefore, after accounting for inflation rates and differences in technologies, the 

average TCI for a biomass-to-SNG plant results in ~ 1530 USD2013/kWinput. This is the 

overall specific cost of a large-scale (1 GW thermal input) bioSNG plant.  

 

Although the estimated TCI value is based on data from large-scale commercial 

operational and under construction plants, the value obtained must be extrapolated in 

order to take into account learning effects. 

 

The value of 1530 USD2013/kW input is therefore the TCI of a 1 GW bioSNG plant that 

would be the first or second of its kind. Because parts of this process are not yet 

upscaled to 1 GW, this 1
st

-2
nd

 of a kind bioSNG plant can only be built in about 10 years 

from now. The question is which value of TCI is realistic for a bioSNG plant on the longer 
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term. For this, it is assumed that 10 GW capacity is installed cumulatively, that is, after 

copying a 1 GW plant ten times. This may be the case in 20-25 years from now, 

approximately in 2030. 

 

Learning usually occurs at two levels: 1) during the construction of the plant and 2) 

during operation of the plant. It is important that lessons learned are incorporated in 

the next plants. This could lead to capital cost-reductions and increased operational 

hours and less downtime of the plant. An important condition is that subsequent plants 

are constructed and/or operated by the same company. Too much time between 

construction could result in an effect called “forgetting by not doing” instead of 

“learning by doing”. 

 

The progress and learning rates strongly depend on the type of technology  [201]. Since 

biomass-to-SNG technology is relatively new, a learning rate of 10% has been assumed 

in this work. By applying the equations presented in Section A.5 of Appendix A, it can be 

checked that increasing the capacity from 1 to 10 GW would reduce the costs with 30%. 

So, the TCI for a complete biomass-to-SNG facility results in  ~ 1100 USD2013/kWinput 

after 10 GW of cumulative installed plants. 
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 5
BioSNG cost price 

In this chapter the cost price of bioSNG is calculated for large-scale production. This 

price is based on the capital cost for a large bioSNG plant which has been estimated in 

Sections 2-4. 

5.1 Assumptions 

A capital cost of  ~ 1100 USD2013/kWinput has been used for the calculation of the bioSNG 

price. The technology selected in this work for SNG production from biomass is briefly 

described in section 1.5 of this document. A 1 GW input biomass-to-SNG plant is 

assumed. This plant produces about 21 million GJ or 655 million Nm
3
 of            

Groningen-quality SNG per year. Table 14 displays the assumptions used in the 

economic analysis for the calculation of the bioSNG price.  

Table 14: Input parameters for estimation of the cost price of bio-SNG (2013).  

Plant parameters 

Plant size (input) 1 GW 

Specific plant cost  1100 USD2013/kW input 

Net electricity consumption 2% of thermal input 

Plant efficiency 

biomass-to-SNG 
70% (LHV based) 

Plant availability 90%   of the year [202] 

Economic parameters  

O&M cost 3 % of the TCI per year [202] 

Other fixed cost 2 % of the TCI per year  

Interest 5 % per year 

Capital charges 10 years, annuity 

Cost of biomass See Table 15 USD2013/GJ 

Cost of electricity 0.09 USD2013/kWh [203] 
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The price of bioSNG is expected to dramatically depend on the cost of biomass 

feedstock. Table 15 shows the price of biomass feedstock in different geographical 

areas.  

Table 15: Price of biomass feedstocks in different geographic areas [203]. 

 Region Biomass feedstock Cost (USD/ton) Cost (USD/GJ) 

Europe 

Industrial wood pellets (CIF Rotterdam) 166 9.8 

Wood chips from local energy crops 60-94 5.2 – 8.2 

Wood chips from Scandinavian forest 

residues to continental Europe 
98 - 115 8.6 – 10.1 

Local agricultural residues 55 - 68 4.8 – 6.0 

Imported pellets from United States to 

continental Europe 
157 - 182 9.3 – 10.8 

United States 

Energy chips / residuals North-East  3.7 

Forest residues 15-30 1.3 – 2.6 

Wood waste 10-50 0.5 – 2.5 

Agricultural residues (corn stover and 

straw) 
20-50 1.7 – 4.3 

Energy crops (poplar, willow and 

switchgrass) 
39-60 4.5 – 6.9 

Brazil 
Wood chips 71 9.3 

Bagasse 11 - 13 1.3 – 2.3 

India 
Rice husk 22 - 30 0.7 – 2.3 

Bagasse 12 - 14 1.4 – 2.5 

 

For the determination of the cost price of bioSNG, three cases have been considered in 

this work: 

 

a) Case 1. The plant is located in Europe (e.g. in the Rotterdam area, the 

Netherlands), and uses wood chips shipped from Scandinavia/Baltic area as 

feedstock. 

b) Case 2. The plant is located in United States, and uses wood chips as feedstock. 

c) Case 3. The bioSNG facility uses cheap agricultural residues (e.g. Brazil or 

India). 

 

In all cases, it is assumed that the values include the transportation costs to the plant. 

5.2  Results 

Results obtained are summarized in Table 16. The cost price of bioSNG ranges between 

14-24 USD2013/GJ, and strongly depends on the biomass feedstock, and therefore, on 

the plant location.  This price is equivalent to  ~ 0.45– 0.77 USD2013/Nm
3
, based on the 

LHV of Groningen gas (32 MJ/Nm
3
). Figure 14 compares the distribution of costs of 

bioSNG production for cases 1 and 3. Biomass price amounts to 54% of total costs in 

case the bioSNG plant is located in Europe. This fraction is only 21% in case inexpensive 

agricultural residues are available. 
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Table 16: Summary of results of bioSNG cost price produced in a 1 GW input plant.   

Scenario Biomass feedstock 

Cost of 

biomass* 

(USD2012/GJ) 

Cost of 

bioSNG 

(USD2013/GJ) 

Case 1 Wood chips 9 24 

Case 2 Wood chips 4 17 

Case 3 Agricultural residues 2 14 

           * Cost at plant gate. 

Figure 14: Distribution of costs of bioSNG production. Comparison of most expensive (case 1) and least 

expensive (case 3) scenarios. 

  
Case 1: 24 USD2013/GJ Case 3: 14 USD2013/GJ 

 

 

Even though it has been shown that the price of bioSNG is largely determined by the 

price of biomass feedstock, this is not the only factor that must be taken into account in 

the decision of a bioSNG location. Other economic/political factors must also borne in 

mind. BioSNG must compete with fossil natural gas, or even also with SNG produced 

from coal. In this sense, the recent changes in the energy scenario, particularly 

concerning the development of non-conventional natural gas production, affect 

decisively on the investment decisions of production of bioSNG. For additional 

information, Appendix B briefly reviews the status of some coal-based technologies in 

the United States and China. Figure 15 displays the map of global natural gas trade in 

2013. As can be seen, bioSNG plants only make sense in areas in which the demand of 

natural gas is higher than the production. Therefore, in principle, Europe and the     

Asia-Pacific region (China, Korea, Japan) are the geographical areas in which bioSNG 

production might be in principle most attractive. China has recently focused on SNG 

production from autochthonous coal (see Section B.1 in Appendix B), and therefore, 

production of SNG from biomass might not be economically competitive.  
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Figure 15: Natural gas trade in 2013 [205] 

 
 

Looking at bioSNG as biofuel, projection of price of biofuels up to 2050 can be found in 

reference [206], whereas estimations of natural gas prices up to 2035 are reported in 

reference [207]. Prices have been translated in terms of energy content and corrected 

with the inflation rate, in USD2013/GJ. Results can be found in Figure 16. As can be seen, 

even at its highest value (corresponding to production in Europe), bioSNG has a lower 

cost per energy content unit than most biofuels, including BTL diesel. However, bioSNG 

is in general more expensive than fossil natural gas, and therefore should be labelled as 

biofuel in order to be competitive. The projected cost of fossil natural gas cost ranges 

between 7.3 – 9.6 USD2013/GJ in North America,  13.8 – 16.9 USD2013/GJ in Pacific, and 

11.1 – 14.4 USD2013/GJ in Europe [207]
1
, whereas bioSNG has estimated in this work as  

14-24 USD2013/GJ (see Table 16). 

Figure 16: Comparison of 2030 forecasted prices of fuels in terms of energy content (data 1-7 adapted 

from [206], data 8-10 adapted from [207]).  

 
 

 

 

 

 

xxxxxxxxxxxxssssssssxxxxxxxxxxxxxx 

1 A conversion factor of 1 GJ = 0.95 MBtu, and an inflation rate of 2.65% (average in United States in 2000-2013 
[9][10]) have been applied for the calculation of prices in USD2013/GJ from USD2010/MBtu. 
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5.3 Internalization of CO2 emissions costs in 

bioSNG price 

Prices compared in Figure 16 do not take into account the cost of CO2 emitted during 

the cycle life of SNG. Actually, reduction of greenhouse gases is one of the main 

advantages of using biomass instead of coal for SNG production. The internalization of 

CO2 emissions into the fuel cost increases the economic feasibility of bioSNG. In order 

to quantify this effect, three gaseous fuels have been compared: 

 

1. Fossil natural gas, as reference (NG). 

 

2. SNG produced from coal (CSNG). 

 

3. SNG produced from biomass gasification (bioSNG). 

 

For the comparison, the following assumptions have been taken: 

 

- The cost of CO2 emissions in 2030 is 40 USD2010/ton CO2 in Europe (Current Policies and 

New Policies scenarios), 23 USD2010/ton CO2 in China (New Policies scenario) and 30  

USD2010/ton CO2 in United States [207]
2
.  

 

- The price of natural gas in 2030 corresponds to the IEA New Policies scenario [207], i.e. 

between 11.7 USD2010/GJ in Europe, 13.9 USD2010/GJ in Asia-Pacific, and 7.9 USD2010/GJ 

in North America [207].  

 

- SNG from coal is assumed to be produced from steam coal (109.3 USD2010/ton in 2030 

according to the New Policies scenario [207]). Using the average 980 USD2013/kWinput 

obtained in Section 2 of the document as input value for the TCI of a CSNG plant, and 

the same methodology applied to estimate the cost price of bioSNG, this results in a 

cost price of SNG from coal of 14.8 USD2013/GJ.  

 

- BioSNG cost, 24 USD2013/GJ, has been taken from the result of the European scenario 

(conservative case) obtained in this work. 

 

- CO2 sequestration has not been considered in any case. 

 

- Costs have been updated to USD2013 by assuming an inflation rate of 2.65% (average of 

United States in 2000-2013 [9][10]). 

 

- CO2 emission values, expressed in ton/MJ SNG or NG, have been calculated from data 

found in literature. In each case, combustion of CH4 produced, and production of CO2 

during the SNG synthesis process have been considered. Calculated values are 

summarized in Table 17.  
xxxxxxxxxxxxssssssssxxxxxxxxxxxxxx 

2 United States is considered in the New Policies scenario to adopt a ‘shadow price’ for CO2 ranging between              
15 USD2010/ton in 2015 to 35 USD2010/ton in 2035  [207]. 
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Table 17: CO2 emissions for the process cycles considered. 

Case 
CO2 emission  

(ton CO2/m
3
 SNG or NG) 

CO2 emission  

(ton CO2/MJ SNG or NG) 
Reference 

Natural gas 0.0020 5.7 10
-5

 [7] 

SNG from coal 0.016 2.7 10
-4

 [151] 

BioSNG 0.000625 1.8 10
-5 

* [7] 

* In agreement with the values of CO2 emissions of biomass [208], and applying a factor of 70% 
efficiency (LHV basis) for the conversion of biomass to SNG. 

 

Costs of natural gas and SNG from coal have been calculated for three scenarios, Europe 

China, and United States (USA), in order to take into account the different expected cost 

of natural gas and CO2 emissions. Results of calculations are displayed in Table 18 and 

Figure 17. 

Table 18: Effect of cost of CO2 emissions on cost of natural gas and SNG from coal and biomass. 

Fuel Scenario 

Base price in 

2030 

(USD2013/GJ)  

CO2 emission cost  

(USD2013/ton CO2)
 
 

CO2 emission 

cost 

(USD2010/GJ) 

Total cost 

(USD2013/GJ) 

NG 

(Reference) 

Europe 12.7 43.3 + 2.5 15.1 

China 15.0 24.9 + 1.4 16.4 

USA 8.5 32.4 + 1.8 10.4 

CSNG 

Europe 14.8 43.3 + 11.7 26.5 

China 14.8 24.9 + 6.7 21.5 

USA 14.8 32.4 + 8.8 23.6 

BioSNG 24 43.3 + 0.8 24.8 

 

As can be seen, the internalization of the cost of CO2 emissions makes bioSNG 

competitive with SNG produced from coal. It is interesting to observe in Table 18 the 

significant penalty of CO2 emission in the increase of CSNG cost with respect to natural 

gas, which in the end makes it the most costly gaseous fuel. 

Figure 17: Summary of results of addition of CO2 emission cost on 2030 untaxed price of natural gas, 

and SNG from coal and biomass. 
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 6
Outlook 

This report has dealt with the estimation of the investment cost of a bioSNG plant and 

the cost price of bioSNG. As analysed in Section 5.2, the cost of bioSNG in terms of 

energy content is expected to be competitive with other biofuels in the medium term. 

However, bioSNG is in general more expensive than fossil natural gas, and should be 

labelled as biofuel in order to be competitive. Therefore, the question that must be 

addressed is how to reduce the cost price of bioSNG to become economically attractive. 

In this section, some key topics that might enhance the economy of bioSNG are briefly 

discussed. 

 

Co-production of SNG and chemicals/biofuels   
Producer gas from fluidized bed gasification contains high amounts of methane, which 

is good for the efficiency to bioSNG, but it also contains significant amounts of other 

hydrocarbon molecules like benzene and ethylene. These molecules are converted into 

methane in the conventional configuration of bioSNG plant (see Figure 2). Benzene and 

ethylene require special attention due to their tendency to form coke on the 

methanation catalysts. At the same time, benzene and ethylene are valuable chemicals, 

which add up to more than 25% of the heating value of the raw producer gas. 

Therefore, separation of benzene and ethylene rather than conversion to methane 

might be an attractive option. ECN is currently developing technology for the recovery 

of valuable hydrocarbons from producer gas. At the same time, research is ongoing to 

increase the yield of valuable chemicals in gasification to further improve the business 

case of co-production bioSNG and chemicals. 

 

Besides hydrocarbons, almost half of the producer gas from fluidized bed gasification 

consists of H2 and CO. This syngas can be used to produce liquid biofuels or 

biochemicals like diesel, jetfuel, or methanol, where the unconverted gases and all the 

hydrocarbons subsequently are converted into SNG. This combination brings economic 

benefits because of the high value liquid biofuels, but also has several technical 

synergies that may reduce the costs of the plant.  

 

Another attractive option involves the co-production of LNG and chemicals/biofuels. 

The production of LNG through cryogenic separation offers the additional advantage 
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possibility of delivering ultra-clean syngas (H2 and CO) for subsequent synthesis of     

bio-methanol or other biofuels. 

 

BioCCS 
BioSNG production will always result in a large flow high-purity CO2. The volume of CO2 

roughly equals the bioSNG production on a volume basis. Contrary to Carbon Capture 

and Storage (CCS) applied to reduce CO2-emissions from fossil fuel processes, CCS 

combined with bioSNG production hardly involves an energy penalty, since CO2 

separation is an integral part of the bioSNG process. Implementation of capture and 

storage of CO2 in bioSNG plants is therefore a relatively efficient and cheap method to 

reduce CO2 concentrations in the atmosphere, allowing negative CO2 emissions. 

Moreover, costs of bioSNG might be reduced in cases where there is a market for the 

produced CO2. 

 

Power-to-Gas 
The production of large quantities of CO2 in the bioSNG process offers another 

opportunity through the implementation of the so-called power-to-gas (P2G) concept. 

Hydrogen produced from excess renewable power production in regions with high 

shares of solar or wind power can be added to an existing bioSNG plant to produce 

additional methane while consuming CO2 that otherwise would be lost as a carbon 

source. This concept involves limited additional costs in the bioSNG process, since it 

only requires additional capacity in the last part of the process.  The combination of 

bioSNG and power-to-gas therefore creates a cost benefit that might improve the 

economics of bioSNG production. 
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 7
Conclusions 

 The total capital investment for 1 GW bioSNG plant has been estimated as       

~1530 USD2013/kWinput, based on the absolute cost references for GTL, CTL, CTM, 

CSNG and IGCC plants, and taking into account the technical differences with 

respect with a bioSNG plant. 

 Cost of biomass-to-SNG plant ranges from +5% to +30% compared to the selected 

commercial reference technologies. 

 Technology learning could decrease the TCI for a bioSNG plant with about 30% to 

~1100 USD2013/kWinput after 10 GW of cumulative installed capacity in the         

medium-term (2030).  

 The cost price for 1 GJ of bioSNG largely depends on the biomass feedstock used. 

Three scenarios (wood chips in Europe and United States, or inexpensive 

agricultural residues from Brazil/India) have been analysed. A TCI of                     

1100 USD2013/kWinput results in an overall bioSNG cost price ranging between        

14-24 USD2013/GJ or 0.45- 0.77 USD2013/Nm
3
 (Groningen quality gas). 

 Despite the highest bioSNG costs compared with the rest of scenarios considered, 

Europe offers several advantages for the deployment of SNG from biomass, e.g. 

existing natural gas infrastructure, and a developed SNG market based on 

incentives and obligations.   

 In the medium term (2030), bioSNG is expected to have a lower cost in terms of 

energy content than other liquid biofuels. However, it cannot be competitive with 

fossil natural gas prices. 

 Internalization of CO2 emissions in the medium-term final cost of SNG reveals that 

bioSNG could be competitive with SNG produced from coal. Even so, medium-term 

bioSNG prices are expected to remain higher than those of natural gas. 

 The implementation of concepts such as the co-production of bioSNG/bioLNG and 

chemicals/biofuels, the capture and storage of CO2, or power-to-gas systems will 

contribute to enhance the business case of bioSNG production. ECN is working on 

all these topics. 
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Appendix A. Assumptions 

for calculation of TCI costs 

A.1 Efficiency of reference plants 

 Efficiency GTL plants: 60% [194][195][209]  

 Efficiency CTL plants: 49% [195] 

 Efficiency CTM plants: 55% [210][211] 

 Efficiency CSNG plants: 60% (LHV based) [197][212] 

 Efficiency IGCC plants: 42% [161][165] 

A.2 Distribution of products 

 CTL plants: 4% LPG, 48% diesel, 48% gasoline (% wt.) (high-temperature 

Fischer-Tropsch) [213]. 

 GTL plants: 70% diesel, 25% gasoline, 5% LPG [37][193]. 

A.3 Heating value of fuels 

 LHV diesel: 43.1 MJ/kg 

 LHV gasoline: 43.95 MJ/kg 

 LHV LPG: 46.61 MJ/kg 

 1 bbl = 5.7 GJ LHV diesel = 4.75 GJ LHV gasoline = 0.015 GJ LHV LPG 

 LHV methanol = 19.9 MJ/kg 

 LHV SNG: 35 MJ/Nm
3
 

 LHV Groningen natural gas: 32 MJ/Nm
3
 

 

A.4 Economic analysis 

The total investment cost normalized to a 1 GW plant, 2TCI , is calculated by applying 

equation (Eq. 1): 

 
F

P

P
TCITCI 












2

1
12

 
(Eq. 1) 

 

where: 

2TCI : Total Investment Cost normalized to 1 GW input (USD). 

1TCI : Total Investment Cost given at 2P  input power (USD). 

2P : Input size of reference plant (GW). 
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2P : Normalized power input (equal to 1 GW). 

F : Scale-up factor (William’s factor): 0.7 [8]. 

 

The total investment cost updated to 2013-USD 3TCI  is obtained after applying (Eq. 2): 

 
Y

I
TCITCI













2013

23
100

1
 

(Eq. 2) 

 

where: 

I : Inflation rate, taken as 2.65% (average inflation rate in the United States in the 

period 2000 - 2013) [9][10]. 

Y : Start-up year of reference plant. 

 

In case of plants under construction with start-up data beyond 2013, or plants with no 

available start-up date in literature, 2013 is assumed as reference year for calculations. 

 

In case that the investment costs are provided in a currency different than American 

Dollars, the following exchange rates are applied: 

 

1 CNY = 0.163 USD; 1 EUR = 1.359 USD 

 

A.5 Learning effects 

Learning effects are analysed in Section 4 of this document. Learning curves are often 

expressed as (Eq. 3):  

 

















0
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P

P
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t

t

 
(Eq. 3) 

where tC  is the cost of the plant at time t, 0C  is the cost of the plant at t = 0, tP  the 

cumulated installed capacity (in GW) at time t, 0P  the number of plants installed at 

time t = 0 and  the learning index. The  is related to the Progress Ratio PR , as 

shown in (Eq. 4), which expresses the percentage to which costs are reduced by 

doubling the installed capacity:  

 
 2PR  (Eq. 4) 

 

The PR  is related to more commonly known Learning Rate ( LR ) by PRLR 1 . 

The progress and learning rates strongly depend on the type of technology. Typical 

values for progress ratios are 0.8 – 0.9 [201]. 

 

Since biomass-to-SNG technology is relatively new, a learning rate of 10% has been 

assumed in this work. By applying (Eq. 4), this means a learning index  of 15%. 

Therefore, according to (Eq. 3), increasing the capacity from 1 to 10 GW would reduce 

the costs with 30%.  



 

 ECN-E--14-008         52 

 

Appendix B. Status of 

reference technologies 

For a realistic, credible estimation of total investment costs of reference technologies, 

only operational or under construction plants have been considered. However, in the 

recent years there is a large number of coal-based projects that have been shelved or 

delayed, especially in the United States. In this Appendix, some background information 

on the status of some reference technologies, as well as a review of some coal 

commercial projects delayed or shelved, is presented. 

B.1 Coal-to-SNG in China 

Economic development is a key priority in China, and energy is needed for that purpose. 

However, China has growing import dependency on oil and gas. Coal is the main 

hydrocarbon resource of China, and the Chinese coal industry is the largest in the world. 

Therefore, SNG allows both objectives by substituting imported gas and oil products for 

heating and cooking applications. China is now building the largest SNG industry in the 

world [151]. Although it is still unclear the role of SNG in the future energy scenario of 

China, SNG could provide a significant contribution to the country’s gas supply, which 

may outstrip shale gas in both quantity and timing  [156]. 

 

In 2012 there were more than 30 proposed SNG projects with a combined capacity of 

120 billion m
3
/y. In 2013, the central government has approved nine large-scale SNG 

plants with a total capacity of 37 billion m
3
 of natural gas per year. Total planned 

capacity of nearly 200 billion m
3
/y exceeds by far China’s total natural gas demand 

[151].  

 

If full target capacity of the under construction projects is reached, coal gasification 

could supply 89-96 billion m
3
/y [156]. The first two commercial coal gasification projects 

are Qinghua Coal Group’s project in Yili, Xinjiang (1.38 billion m
3
/y in first phase, rising 

eventually to full potential capacity of 5.5 billion m
3
/y). The second project is Xinjiang 

Guanghui (0.5 billion m
3
/y). Four more projects are expected to be completed in 2013, 

two in Inner Mongolia and two more in Xinjiang [156]. 

 

Operating or under construction commercial CSNG plants in China are summarized in 

Table 4 of Section 2. Planned CSNG plants can be found in Table 19. 
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B.2 Coal-to-liquids in China 

China is also looking to coal as an alternative to oil, and proposals for over 60 million 

tons of coal-to-liquids (CTL) capacity (about 1.2 million bbl/day) have been submitted 

for review [214]. Operating or under construction commercial CTL plants in China are 

summarized in Table 2 of Section 2. 

B.3 Coal-to-methanol in China 

Methanol can be used as liquid fuel or as feedstock for DME plants and              

methanol-to-ethylene or methanol-to-propylene plants. In 2007, total consumption of 

methanol in China was ~ 10 million ton, of which 65% was produced from coal. Since 

China has a lack of oil and gas, but is rich in coal resources, it is expected that the 

country will focus on coal-to-methanol processes for a long period of time in the future 

[60]. 

B.4 Coal-to-SNG in United States 

Beginning 2000, in response to increases in natural gas prices, American utilities began 

a renewed push to build new coal-fired electricity generating plants. By the spring of 

2007, approximately 150 such projects were either under construction or in various 

stages of planning. Since then, scores of coal-fired power plants have been cancelled, 

but others have been proposed. 

 

By 2009, there were at least 15 CSNG plants proposed in United States in different 

stages of development [215]. The prospects of coal-to-SNG technology seemed 

promising, due to the abundance of coal supply, a rise of prices of oil and natural gas, 

the interest in energy independency and environmental considerations, and financial 

incentives (long-term SNG purchase agreements with energy utilities, which removed 

commodity risks; 80% debt/equity ratio with virtually all long-term debt covered by 

federal loan guarantee) [216].  

 

However, new developments in horizontal drilling and hydraulic fracturing have greatly 

expanded shale gas and oil production in North America. As a consequence, shale gas 

production in the United States has increased by around five times from 2006 to 2010. 

This increase is over 20% of the dry natural gas production volume in the US. Shale gas 

has caused the Henry Hub spot price to drop from 12 USD/Mscf in June 2008 to less 

than 4 USD/Mscf in January 2012 [217]. This boost in unconventional natural gas 

production is expected to continue to expand over the medium term [205].  

 

Low gas prices associated with the shale gas revolution have caused a marked decrease 

in coal use in the United States, the world’s second-largest consumer. In 2005, when 

the first shale well was fractured, coal produced almost three times as much power in 

the United States as gas. By 2017 it is expected that coal and natural gas have similar 

contribution. The abundance of natural gas has reduced the economic viability of SNG 
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plants [151][205][218]. Table 20 shows the status of some planned CSNG projects in 

United States. 

B.5 Coal-to-liquids in United States 

United States is the largest oil importer in the world. Petroleum imports accounts for 

60% of total, with a cost of 265 billion USD in 2006. The need for fulfilling the increased 

demand for transportation fuels, as well as the abundant coal reserves, are the main 

drivers for the development of the CTL industry in United States[219].  

 

However, there are several barriers to the creation of US CTL industry, including oil 

price volatility, technical uncertainty in terms of integration of plant components, need 

for incremental investment in coal mining infrastructure, availability of materials and 

resources, and environmental concerns (CO2 emissions, water availability) [219]. These 

factors have influenced the large number of projects delayed or shelved, as shown in 

Table 21. 

B.6 Coal-to-liquids in Australia 

Some of the CTL projects being investigated in Australia include [220]: 

 Linc Energy: commercial underground coal gasification to liquids in the 

Arckaringa Basin. 

 Carbon Energy. 

 Cougar Energy. 

 Blackham Resources. 

 Altona Resources Arckaringa Coal-to-Liquids and Power Project. 

 Monash Energy – a joint venture between Shell and Anglo American. 

 FuturGas Project, by Hybrid Energy Australia. 

 

Nevertheless, environmental concerns together with high capital costs are likely to limit 

development and expansion of the CTL industry in Australia in the immediate future. If 

CCS technology and deployment matures, this may provide the economic conditions 

under which CTL could become viable [221]. 
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Table 19. Data of some planned commercial-scale coal-to-SNG projects in China. 

Project name Location 
Plant output 

(bcm/y) 

Plant output 

(GW) 
Investment 

(billion USD) 
Start-up date Reference 

China Guodian Corporation Xing’an, Inner Mongolia 2 2.22 2.12 2014 

[53] 

Beijing Holding Group Hohhot, Inner Mongolia 4 4.44 4.9 - 

Shaanxi Coal and Chemical Industry Group Yulin, Shaanxi 3 3.33 5.23 - 

CNOOC, Datong Coal Mine Group Company Datong, Shanxi 4 4.44 4.9 - 

Shanxi International Power Group, Wison Engineering Shuozhou, Shanxi 4 4.44 3.92 - 

Qinghua Group Yining County, Yili, Xinjiang 1.3 1.44 0.82 2012 

Shendong Tinanlong Group Changji, Xinjiang 1.3 1.44 1.12 2013 

China Huadian Corporation Changji, Xinjiang 4 4.44 4 2013 

Kailuan Group Changji, Xinjiang 4 4.44 2.86 - 

Xinjiang Guanghui Group Aletai, Xinjiang 4 4.44 3.27 2013 

Xuzhou Coal Mining Group Tacheng, Xinjiang 4 4.44 3.59 - 

Anhui Province Energy Group, State Development & 
Investment Corporation (SDIC) 

Fengtai County, Huainan, Anhui 2 2.22 2.45 - 
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Table 20. Data of some commercial-scale coal-to-SNG projects in the united States. 

Project name Location 
Plant output 

(bcf/y) 

Investment 

(billion USD) 

Projected 

start-up date 
Status Reference 

Secure Energy Inc. Decatur, Illinois 20 0.8 2009 
On hold/ 

delayed 
[6][222][223] 

Power Holdings of Illinois LLC Rend Lake, Illinois 50 2 2013 
Delayed / on 

hold 

[6][222] 

[224][225] 

Indiana Gasification LLC (Leucadia / E3 Gasification / 

Johnston & Associates) 
Indiana 

40 (+ 134 MW 

electricity) 
2.65 2015 

Shelved / 

delayed 

[6][214][222] 

[226][227]  

Oswego SNG Project / TransGas Development Systems Scriba, New York 3.9 2 2010 Shelved [6][222][228] 

South Heart Coal Gasification Project (Great Northern 

Power Development, L.P. / Allied Syngas Corporation) 
Stark County, North Dakota 36.5 1.4 2012 On hold [6][222][229] 

Leucadia’s Mississippi Gasification Moss Point, Mississippi 120 2 2015 On hold 
[6][222][226] 

[230] 

Leucadia Illinois Plant Cook County, Illinois - 3 - On hold [6][222][231] 

ConocoPhillips/ Peabody Energy Muhlenberg County, Kentucky 50-70  2014 On hold [6][222][232] 

Hunton Energy Freeport, Texas - 2.4 2012 Shelved [6][222][233] 
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Table 21. Data of some commercial-scale coal-to-liquids projects in the United States [222]. 

Project name Location 
Plant output 

(bbl/day) 

Investment 

(billion USD) 

Projected   

start-up date 
Status References 

DKRW Energy / SNC-Lavalin Medicine Bow, Wyoming 20 000 2 2014 On hold [234][235][236][237] 

Rentech Mingo County CTL Project Mingo County, West Virginia 20 000 4 2015 Shelved [238] 

Rentech Natchez CTL Project Natchez, Mississippi 25 000 2.75 2014 Cancelled [239][240][241] 

TransGas Adams Fork Energy Plant Mingo County, West Virginia 18 000 4 2013 On hold [242] 

Australian-american Energy / Great Western 

Energy, Many Stars Plant 
Big Horn County, Montana 50 000 7.4 2016 Shelved [243] 

Ambre Energy Southwestern Montana 1 600 000 0.375 2011 Shelved [244] 

Clean Coal Power Operations Paducah, Kentucky 
40 000 (+ 300 

MW electricity) 
7.6 2013 Shelved [245] 

Drummond Coal Company Montgomery County, Illinois 48 000 3.6 - Shelved [246] 

Waste Management & Processors Gilberton, Pennsylvania 
5034 (+ 41 MW 

electricity) 
1 2010 Shelved [247] 

Baard Energy Wellsville, Ohio 
35 000 (+ 200 

MW electricity) 
5 2013 

On hold (no longer 

coal-based) 
[248] 

 

 

 



 

 ECN-E--14-008         58 

Appendix C. Brief overview 
of BTL and bioSNG projects 

in Europe 

In this work, TCI of bioSNG plants has been estimated from references of operational or 

under construction large-scale facilities. The inclusion of biomass-to-liquids or   

biomass-to-SNG plants would have distorted the analysis, given the much lower scale of 

the first demonstration facilities of this type. However, in the last years, a number of 

initiatives for production of SNG, liquid transportation fuels and chemicals from 

biomass has been developed.  

 

The development of bioenergy industry in Europe is driven by the need for fulfilling the 

EU 20/20/20 targets, as well as the security of energy supply. Four main value chains of 

bioenergy can be identified [249][250]: synthetic fuels, bio-SNG, high-efficiency CHP, 

and intermediate energy carriers (bio-oil, torrefaction). Among them, this Appendix 

briefly summarizes the state-of-the-art of demonstration facilities of biomass-to-fuels 

and SNG in Europe. 

 

Table 22 and Table 23 summarize the status of some current European BTL and bioSNG 

projects, respectively. 
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Table 22. Performance and status data of some current demonstration-scale biomass-to-liquids projects in Europe. 

Project name Location 
Plant input 

(MWth) 

Plant output 

(ton/y) 

Investment 

(million EUR) 

Projected   

start-up date 
Products References 

Metsa Group / Vapo, Forest BtL plant Kemi, Finland 320 115 000 530 2016 
92000 ton/y diesel, 

32000 ton/y naphtha 
[250][251][252] 

Karlsruhe Institute of Technology, Bioliq 

project 
Karlsruhe, Germany 2 608 - 2013 DME,  gasoline [250][251][253] 

Chemreq, BioDME Project Pitea, Sweden 3 1460 ~ 22  2011 DME 
[250][251][253][254]

[255][256]  

Chemrec, Domsjo and Vallvik Projects Sweden 200 100 000 49 2015 
Methanol (140000 ton/y) 

to DME (100000 ton/y) 

[250][251] 

[257][258][259] 

UPM, demonstration plant Strasbourg, France 300 105 000 170 

2014 

investment 

decision 

80% diesel, 20% naphtha [250][251] 

Woodspirit Project Netherlands  200 000 199 2016 - 2017 Methanol [250][251] 

BioTfueL Project France 12 - 112.7 2014 F-T products [250][251][260] 

Värmlandsmetanol AB Hagfors, Sweden 111 92 000 300-380 2015-2017 Methanol [250][251][256][261]  

Gussing  FT pilot Gussing, Austria 8 0.2
3
 -  2005 

Heat and power. Test 

site for F-T, SNG, 

alcohols and H2 

[250][251][253][256]  

 

 

xxxxxxxxxxxxssssssssxxxxxxxxxxxxxx 

3 Pilot plant (slipstream from produced gas). 



 

 

 

Table 23. Performance and status data of some current demonstration-scale biomass-to-SNG projects in Europe. 

Project name Location Plant output (MWth) 
Investment 

(million EUR) 

Projected   

start-up date 
References 

ECN/HVC project Alkmaar, Netherlands 

12 MWth input heat and power (1
st

 demo 

plant) 

50-100 MW SNG (2
nd

 demo plant) 

- 2014 
[250][253][262]  

[263] [264] 

E.On Bio2G Project 
Landskrona or Malmo, 

Sweden 
200 450  [250][262][264] [265]  

Goteborg Energi/ E.On, GoBiGas 

Project 
Goteborg, Sweden 

20 (1
st

 phase) 

80 – 100 (2
nd

 phase) 

140 (1
st

 phase) 

59 (2
nd

 phase) 

~ 220 total 

2016 (2
nd

 

phase) 

[250][253][262][264] 

[266][267][268]  

GAYA Project France 20-60 - 2017 
[250][256] 

[262][269][270]  

Gussing FT pilot Gussing, Austria 1 - 2002 [250][262]  
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Appendix D. Examples of 
reference plants  

D.1 Example of GTL plant: Sasol ORYX 

The Sasol ORYX GTL plant (GTL.3 in Table 1 of Section 2) has been selected as reference 

example for comparison purposes in Section 3.1. The process flow diagram of the plant 

is shown in  Figure 18. 

 

Figure 18: Simplified process flow diagram of the ORYX GTL plant [26]. 

 
 

Natural gas feedstock from the Qatar’s North Field is routed to LNG facilities in            

Ras-Laffan. After desulphurization, natural gas is fed to the GTL plant. 96% is used as 

feedstock for syngas production, whereas 4% is used as fuel [24]. An air separation unit 

produces oxygen which is sent to the autothermal reforming unit. Methane reacts with 

oxygen and steam in order to produce synthesis gas. After cooling, syngas produced is 

fed to the Fischer-Tropsch unit. ORYX GTL uses Sasol low-temperature slurry bed 

reactors with proprietary catalysts. The long-chain paraffin hydrocarbons produced are 

cooled and separated into tail gas, wax, hydrocarbon condensate and reaction water. 

Tail gas is sent for further hydrocarbon recovery, whereas hydrocarbon condensate and 

wax are sent to the hydrocracking unit (which uses Chevron catalysts). Water is treated 

and exported for irrigation applications. Product from hydrocracking is routed to a 

series of flash vessels to separate liquid and vapour phases. Vapour is recycled and 

liquid is fractionated and treated into final products (naphtha, diesel, LPG, etc.). 

Hydrogen used in the hydrotreating unit is produced from steam reforming of natural 

gas, shift conversion, and purification via pressure swing absorption [24]. 



 

 

D.2 Example of CTL plant: Sasol Secunda 

For the analysis presented in Section  3.2, Sasol Secunda plant (see CTL.2 in Table 2 of 

section 2) has been selected as reference CTL facility.  

 

Construction of Sasol II began in the mid-1970s, with operation of the two plants 

commencing in the early 1980s. The two plants contain 80 Sasol-Lurgi Fixed Bed Dry 

Bottom (FBDB) gasifiers.  The feedstock for the plants is sub-bituminous coal supplied 

by Sasol Mining, a sister company of Sasol Synfuels.  Natural gas is also used as a 

supplemental feedstock.  Sasol Synfuel plant uses HTFT technology in the Sasol 

Advanced Synthol (SAS) process to convert synthesis gas from coal into automotive and 

other fuels, as well as a wide range of light olefins. The coal is converted in the gasifiers 

into a raw product gas with the addition of steam and oxygen. The produced syngas is 

then cooled, cleaned and conditioned as it leaves the gasifier, producing the first level 

of co-products as they condense or are recovered from the stream: tars, oils and 

pitches, ammonia, sulphur and phenols. Once purified, the syngas is sent to a suite of 

nine Sasol Advanced Synthol (SAS) reactors where it is reacted in the presence of a 

fluidized iron based catalyst at elevated pressure (~ 24 bar) and a temperature of about 

350°C, producing hydrocarbons along with reaction water and oxygenated 

hydrocarbons. The hydrocarbons from the SAS reactors are cooled until most of the 

components are liquefied before fractionation is used to separate the various 

hydrocarbon-rich fractions.  Methane rich gas is also produced in this process and is 

converted to syngas via autothermal reforming for internal processing and sale as 

pipeline gas. The C2 rich stream is split into ethylene and ethane. Ethane is cracked in a 

high temperature furnace, yielding ethylene which is then purified. C3H6 or propylene 

from the light hydrocarbon gases is purified and used in the production of 

polypropylene. Alpha olefins pentene (C5), hexene (C6) and octene (C8) are recovered, 

while the longer-chain olefins (C7 - C11) are introduced into the fuel pool. Oxygenates in 

the aqueous stream from the SAS process are separated and purified in the chemical 

work-up plant to produce alcohols, acetic acid and ketones including acetone, methyl 

ethyl ketone and methyl iso butyl ketone [46][49].  
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Figure 19: Process flow diagram of Sasol Synfuels plant [49] 
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D.3 Example of CSNG plant: Great Plains Synfuels 

For the comparison analysis presented in Section 3.4, the coal-to-SNG plant of Great 

Plains (CSNG.1 in Table 4 of Section 2) has been taken as a reference.  

 

The Great Plains plant was commissioned in 1984 in North Dakota (USA) and has a 

production of 4.8·10
6
 m

3
 SNG/day and 98.7% availability  [2][150]. The facility is 

operated by the Dakota Gasification Company and consists of 14 Lurgi fixed-bed updraft 

gasifiers followed by a WGS conversion unit (1/3 of the total stream) and CO2 and 

sulphur removal via Rectisol® scrubbing (Figure 20). In the pressurized gasifiers,     

18000 ton/day of lignite coal are contacted in counter-current with oxygen (delivered 

by an air separation unit, ASU) and steam. The resulting producer gas is cooled. After 

the Rectisol scrubbing only traces of hydrocarbons and sulphur compounds were found 

[1]. After the methanation unit, the product gas is compressed and dried, CO2 is 

removed and the resulting SNG is distributed to end users via the national gas grid. In 

addition to SNG, other compounds are co-produced: CO2 (for enhanced oil recovery), 

Kr, Xe and liquid N2 (from the air separation unit), naphtha, phenol and cresylic acid are 

produced (from the gas liquor separation unit), ammonium sulphate and ammonia. 

 

 

Figure 20: Simplified process flow diagram of the Great Plains coal-to-SNG plant [2]. 

 
 

D.4 Example of IGCC plant: ELCOGAS 

Elcogas plant in Puertollano, Spain (see IGCC.5 in Table 5 of Section 2) has been selected 

as an example of commercial IGCC plant for comparison purposes in Section 3.5.     

Figure 21 displays a simplified scheme of the process. 

 

The 300 MW Elcogas plant uses a mixture of 50% wt. subbituminous high-ash coal and 

50% petroleum coke from a nearby oil refinery. Coal is ground to < 50-60 m in two 

roller mills. The coal is partly dried in the mills and further dried to less than 2 % wt. via 

medium pressure steam and natural gas combustion. An Air Liquide air separation unit 

produces 85% pure oxygen for the gasifier. The dried coal is then sent through a lock 

hopper before being conveyed pneumatically to four side-mounted burners using 

nitrogen from the ASU as a carrying medium [169]. 
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Syngas is produced in a pressurized entrained-flow Krupp Koppers Prenflo gasifier at 

1200-1600°C and 24 bar. Raw syngas is quenched with recycled syngas to 900°C, and 

further cooled in water-tube syngas coolers to 240°C. Particles are removed with a 

ceramic candle filter, and syngas is scrubbed with water at 165°C to remove NH3 and 

halides. Acid gas removal is carried out with an hydrolysis unit and MDEA amine 

scrubbing. Sulphur is recovered in a Claus unit. Clean syngas is sent to a Siemens gas 

turbine, where it is fired with N2 for NOx reduction. The heat recovery steam generator 

(HRSG) produces steam from the gas turbine exhaust gases. The high-temperature and 

pressure steam produced is fed to a steam turbine to produce additional electricity 

[169]. 

Figure 21: Process layout of the Puertollano IGCC plant [180]. 
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