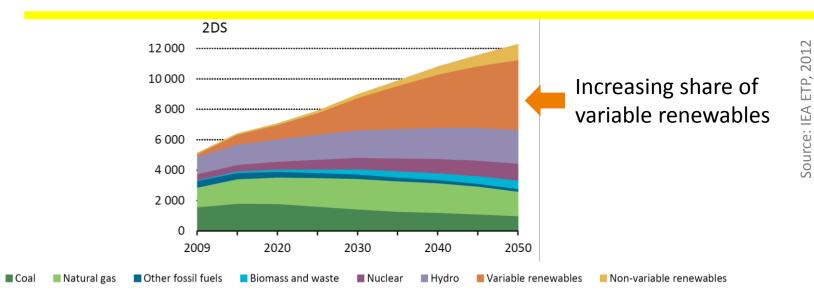


SNG quality in Power to Gas applications

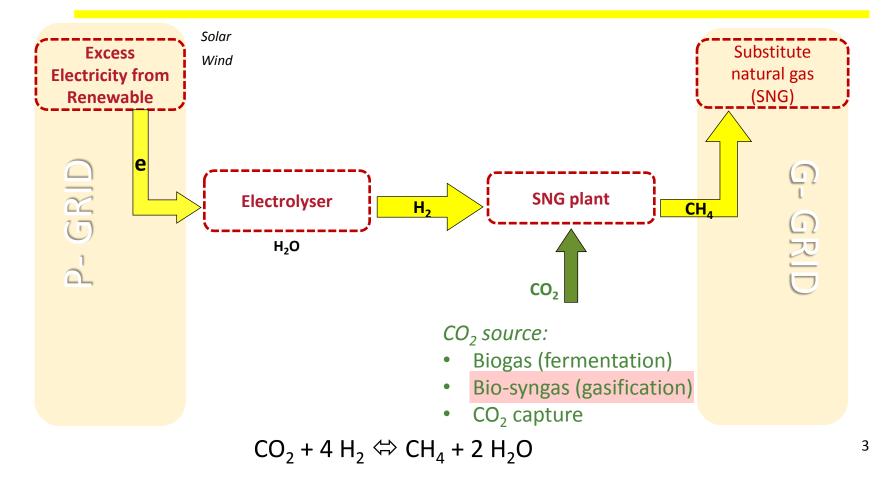
SNG quality in Power to Gas applications


M.Sarić, J.W.Dijkstra, L.P.L.M. Rabou, W.G. Haije, S. Walspurger

EDGaR - 6th Research day 24 april 2014, Nunspeet The Netherlands

www.ecn.nl

The future global electricity mix



 \rightarrow Not all green power can be fed into the electricity grid due to:

- Mismatch in time
- Mismatch in location (transport limitations)
- Excess renewable electricity

Power-to-(Green)-Gas

EDGAR Synthetic methane project

SOE, Solid Oxide Electrolyzer (TUD)

• Characterization, modeling and development

Methanation (ECN)

- Feedstock & product quality
- Gas cleaning

Focus

- Unit operation development
- Process design

Integration and market aspects (Hanze, ECN, TUD)

- Preferred configurations
- LCA & chain efficiency
- Market opportunities

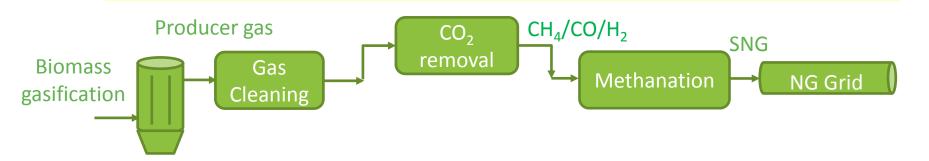
Objectives

Process

- 1. Configurations and conditions
- 2. Flexibility impact

Gas quality

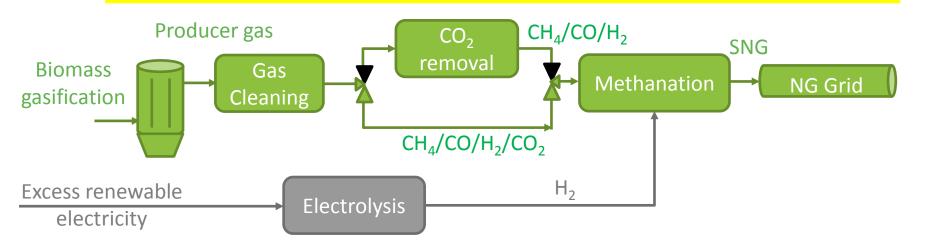
- 1. Thermodynamic assessment
- 2. Experimental
- 3. Novel process



Take home messages

- Power-to-gas for producer gas upgrade can almost double SNG production
- Low impact on SNG quality, H₂ limit in the grid point of attention
- Successful experimental results with methanation, equilibrium obtained
- "Proof of principle" with novel sorption enhanced (SE)-methanation, close to 100% conversion

Systems modes evaluated: *E-demand*



Stream composition after gas cleaning:

Mole Frac	
H2	38.78%
СО	8.57%
CO2	32.48%
CH4	18.52%

Systems modes evaluated: *E-excess*

Stream composition after gas cleaning:

Mole Frac	
H2	38.78%
СО	8.57%
CO2	32.48%
CH4	18.52%

→ Switch between two modes

System starting points

ECN biomass gasification technology

- MILENA indirect gasifier
- OLGA tar removal

SOE electrolyzer

Pure H₂ available a at required pressure

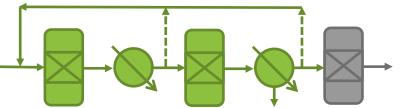
Gas cleaning

- Water scrubbing
- COS/H₂S removal
- Pre-reforming
- Pre-compression

CO₂ removal (MEA) [with bypass] Methanation

- SNG upgrade
 - Water removal
 - Compression to grid pressure [60 bar]

800 kW MILENA pilot gasifier


Battery limits

Design variables

Methanation configuration:

multi-stage process with 3 intercooled fixed bed reactors

Presented here

- Configuration 1: high temperature T_{max}=650°C, 3 stage, recycle after 1st stage
- Configuration 2: high temperature T_{max}=650°C, 3 stage, recycle after 2nd stage
 - Configuration 3: low temperature T_{max}=450°C, 2-stage recycle after 1st stage

Methanation section pressure

20-60 bar

Lurgi HT

Great Plains

Criteria

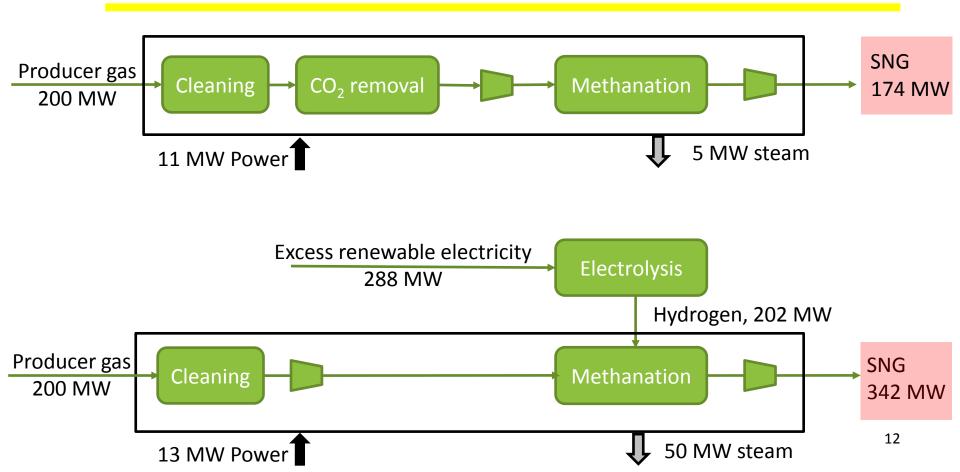
Wobbe index

 $W = \frac{HHV}{\sqrt{(\rho_g / \rho_{air})}}$

W> 43.5 MJ/Nm³ Dutch gas grid standard

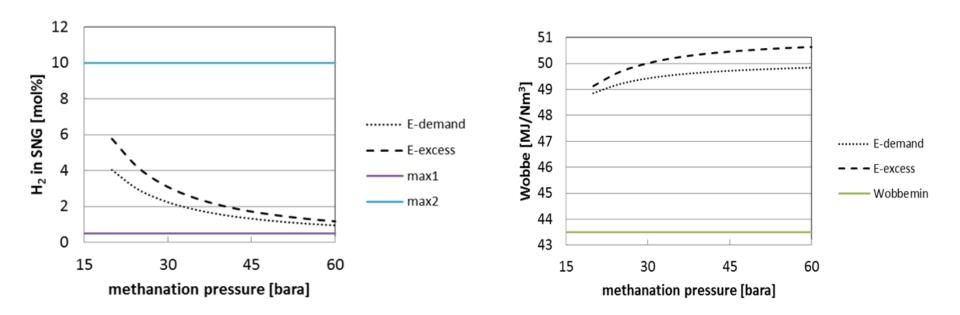
SNG molar H₂ Content

- *Max1*<0.5% H₂
- *Max2*< 10% H₂


Dutch gas grid standard Possible future limit

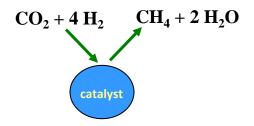
Energy balance

- Steam balance
- Total power use

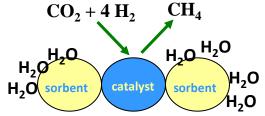


Comparison: *E-demand* vs. *E-excess*

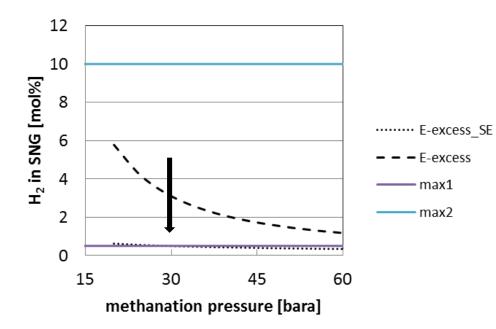
Gas quality: *E-demand* and *E-excess*



H₂ addition in *E*-excess has low impact on the gas quality


Sorption Enhanced (SE-)Methanation

CO₂ Methanation reaction $CO_2 + 4 H_2 \Leftrightarrow CH_4 + 2 H_2O$


CO₂ Methanation reaction + Water removal $CO_2 + 4 H_2 \Leftrightarrow CH_4 + 2$

Enhanced reactants conversion

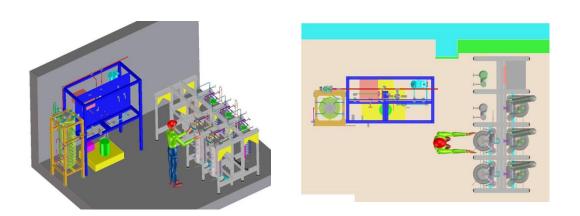
Gas quality: SE-methanation

Assumptions:

- 2 conventional reactors
- 3rd reactor SE-methanation
- T= 250°C
- Water removal is 90%

 \rightarrow H₂ level target of *Max1* met at operating pressures of 30 bar

Conclusions & Outlook System studies


- Power-to-gas is a flexible solution that can double the SNG production
- Switch between *E-demand/E-excess* has limited impact on SNG quality
- H₂ amount is point of attention
- SE-methanation is a possible solution to obtain allowable H₂ contents

Outlook

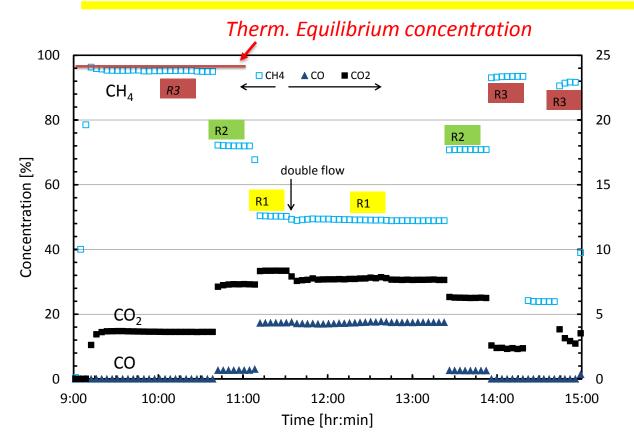
- Other feedstocks
- Sour methanation

Test facility for methanation

HDS + SNG

- Methanation: 3-reactor in series test-rig
- Operating with real producer gas
- Pressurized system, 6 bar

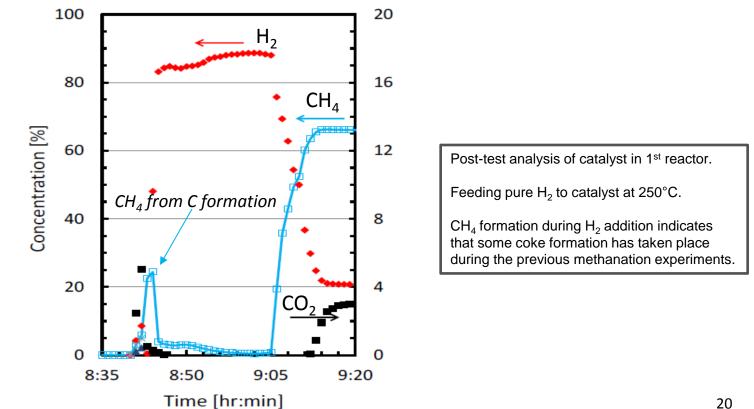
Biogas methanation


Goal : Experimental verification biomass to SNG with commercial Ni-based catalyst, not designed for CO_2 feed

Simulated biogas	mol%
H ₂	61.6%
CO ₂	14.7%
CH ₄	22%
Ar	1.7%

• T_{inlet} ~ 250°C , p= 6 bara, GHSV = 1,000 -2,000 h⁻¹ , tests w/wo steam addition

Results – biogas methanation

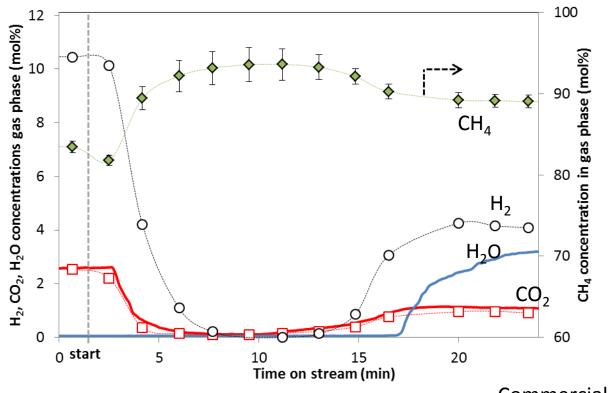

In: 5% excess H_2 to 60/40 CH_4/CO_2

Conversion in 3 adiabatic reactors (R1, R2, R3) with 250°C inlet temperature

Out: equilibrium at reactor temperatures (600°C, 480°C and 350°C)

Results –biogas methanation

Conclusions & outlook biogas methanation

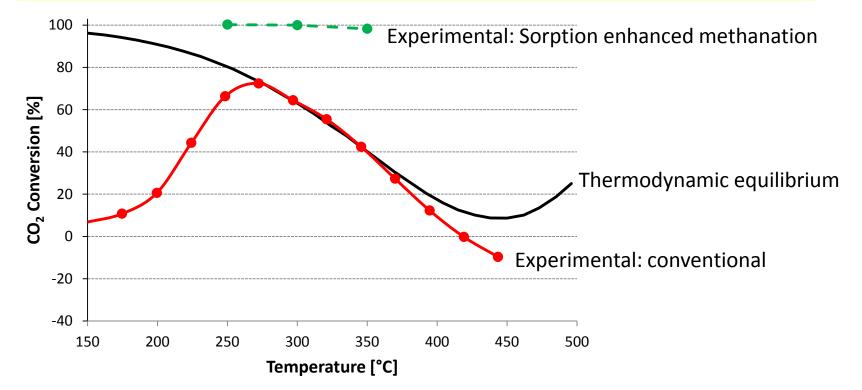


- Successful tests with biogas mixture with commercial catalyst (Thermodynamic conversion reached)
- Doubling of flow (at low GHSV) does not have influence on conversion
- Carbon formation observed in the first reactor

Outlook

- Tests with bio-syngas planned
- Address carbon formation

Experimental results SE methanation


Inlet composition: 2.5% CO₂, 9.9% H₂, 81.6%CH₄, and 6%N₂ P = 1 atm, total flow = 150 ml/min, T=250°C, 3.6 g (Zeolite 4A:cat=5:1) Regeneration: N₂ and H₂

No H₂O in product gas due to adsorption on zeolite
No H₂, CO₂ in product gas due to SE methanation
Break-trough after 13 minutes

Commercial Ni-based cat + Zeolite 4A

Experimental results CO2 conversion

Inlet composition: 2.4% CO₂, 9.4% H₂, 77.8%CH₄,4.7%H₂O and 5.6%N₂ P = 1 atm, total flow = 150 ml/min, 3.6 g (alumina/cat = 5:1), GHSV=2500 h⁻¹

Conclusions and outlook– SE methanation

• Proof-of principle with commercial catalyst + sorbent

Outlook

- Optimization of adsorbent/catalyst materials
- Regeneration options

Conclusions

- Power to gas for bio-syngas upgrade can double SNG production with low impact on SNG quality
- H₂ limit in the grid is point of attention
- Successful experimental results with biogas methanation, equilibrium obtained
- "Proof of principle" with novel sorption enhanced (SE)-methanation, close to 100% conversion

Acknowledgements

The research program EDGaR acknowledges the contribution of the funding agencies: The Northern Netherlands Provinces (SNN). This project is co-financed by the European Union, European Fund for Regional Development and the Ministry of Economic Affairs, Agriculture and Innovation. Also the Province of Groningen is co-financing the project.

ECN

Westerduinweg 3	P.O. Box 1
1755 LE Petten	1755 ZG Petten
The Netherlands	The Netherlands
T +31 88 515 49 49	info@ecn.nl
F +31 88 515 44 80	www.ecn.nl

Publications: www.ecn.nl/publications Fuel composition database: www.phyllis.nl Tar dew point calculator: www.thersites.nl IEA bioenergy/gasification: www.ieatask33.org Milena indirect gasifier: www.milenatechnology.com OLGA: www.olgatechnology.com / www.renewableenergy.nl SNG: www.bioSNG.com /www.bioCNG.com 26

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl