

New gases, old-time quality

L.P.L.M. Rabou

November 2013 ECN-L--13-078

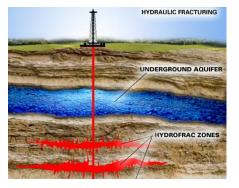
New gases, old-time quality

Luc Rabou

Gas Fuels Europe Brussel, November 29, 2013

www.ecn.nl

Natural gas (fossil fuel)


- Main component is methane (CH₄)
- Usually, some higher hydrocarbons: mainly ethane (C₂H₆), propane (C₃H₈)

and butane (C_4H_{10}) .

• Other components can be N₂, CO₂, He, H₂S and other S-compounds

- LNG = Liquefied <u>Natural Gas</u>
- Shale gas = less accessible Natural Gas

Main natural gas groups

- H gas high calorific gas comparable to 100% CH₄
- L gas low calorific gas comparable to a mixture of 86% CH₄ and 14% N₂

The Netherlands are so used to "Groningen" natural gas, that we call it G gas instead of L gas

This presentation focuses on G-gas, but H-gas case is similar

Natural gas composition (vol%)

	G-gas	L-gas Germany	H-gas Russia	H-gas Norway	LNG Nigeria	LNG Lybia
CH ₄	81.3	87.1	97.7	87.8	91.3	81.6
C_2H_6	2.9	0.7	1.0	7.6	4.6	13.4
C_3H_8	0.4	0.06	0.3	1.3	2.6	3.7
C ₄₊	0.2	0.03	0.1	0.3	1.4	0.7
CO ₂	0.9	2.3	0.1	2.0	-	-
N ₂	14.3	9.8	0.8	1.0	0.1	0.7

New gases: methane +

- Biogas (from digestion)
- SNG (from gasification + methanation)
- H₂ or CH₄/H₂ mixture from P2G
 (+ CO₂ methanation)

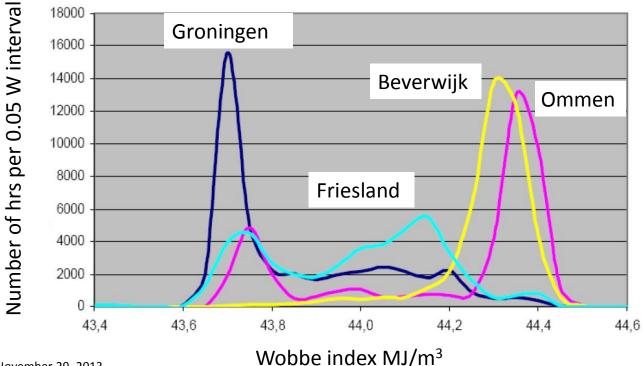
~40% CO₂, some N₂, trace H₂ 1-10% H₂, some CO₂, N₂, trace CO, C_xH_y 1-100% H₂, (+ some CO₂, CO)

Gas (e)quality: Wobbe index

Interchangeability of gases is not determined by heating value (HV), but by the Wobbe index

$$W = \frac{HHV}{\sqrt{d}}$$

HHV = higher heating value, i.e. including heat of condensation of water vapour (in MJ or kWh/m³, volume at 0°C and 1 bar)


d = density relative to air

Wobbe importance (1)

Identical Wobbe indices guarantee identical heat output => safety

Wobbe importance (2)

Identical heat output does not mean identical gas consumption

=> You may not get what you pay for

GC (expensive) or sensor (cheap?) for measurement of heating value required

=> Here it gets political: how accurate should your bill be?

Wobbe is not a cure-for-all

=> not naturally occurring or extreme gas compositions may require additional safety measures (e.g. limit values, detectors, smart systems)

=> This is technical, but quickly becomes even more political

9

Transition to Green Gas

http://groengas.nl/wp-content/uploads/2012/05/BioNoF1.jpg

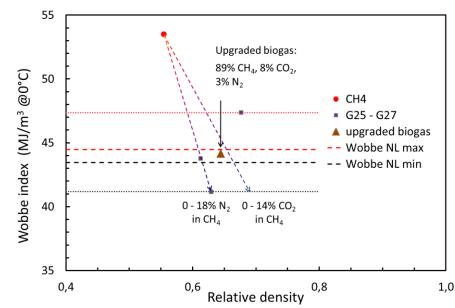
Groen Gas 2.0 Milena-Olga-SNG

L.P.L.M. Rabou November 29, 2013

New gas compositions (vol%)

	G-gas	Upgraded biogas			H ₂ rich	
		low CO ₂	high CO ₂	high CO ₂ + LPG	(SNG or P2G)	
CH ₄	81.3	87.0	88.9	76.7	78.5	
C ₂ H ₆	2.9					
C ₃ H ₈	0.4			8.0		
C ₄₊	0.2					
H ₂					10.0	
CO ₂	0.9	3.5	9.8	15.3	-	
N ₂	14.3	9.5	1.3		11.5	
HHV	35.1	34.6	35.4	38.6	31.3	
W _{273K}	43.7	43.7	43.7	43.7	43.7	

Enriched biogas and H₂-rich CH₄ require 9% lower c.q. 12% higher gas flows


Biogas upgrading debate

Digestion => \sim 40% CO₂ + \sim 60% CH₄

Remove $CO_2 \Rightarrow ~90\% CH_4 + some CO_2$ (+ trace N₂) Additional CO₂ removal to below 2.5 or 8% and N₂ mixing would increase cost

=> Upgrading biogas becomes less attractive

BioSNG: gasification + methanation

Biomass + heat + steam => producer gas (mainly CO, H_2 , CO_2 , CH_4 , C_xH_y)

Gas cleaning (removal of catalyst posions)

Catalytic reactions

shift $CO + H_2O => CO_2 + H_2$ hydrogenation,e.g. $C_2H_4 + H_2 => C_2H_6$ methanation $CO + 3H_2 => CH_4 + H_2O$ Sabatier $CO_2 + 4H_2 => CH_4 + 2H_2O$

Removal of CO_2 and $H_2O =>$ "pure" CH_4

BioSNG

	G-gas	Town gas	Biomass producer gas	BioSNG
СО		13	33	0.1
H ₂		51	27	4
CH ₄	81	23	14	90
C_2H_6	3	2		
C_2H_4		2	4	
C ₃₊	1	1	1	
CO ₂	1	3	20	3
N ₂	14	5	1	3
HHV	35	21	16	36
W _{273K}	44	31	18	48

Methanation is	equilibrium	reaction
----------------	-------------	----------

 $CO + 3H_2 \Leftrightarrow CH_4 + H_2O$

Some CO and H₂ remain

Lower concentrations => higher cost How much is acceptible/safe?

P2G (Power-to-Gas)

• H₂ production by water electrolysis, using excess renewable power

H₂ addition to natural gas

OR

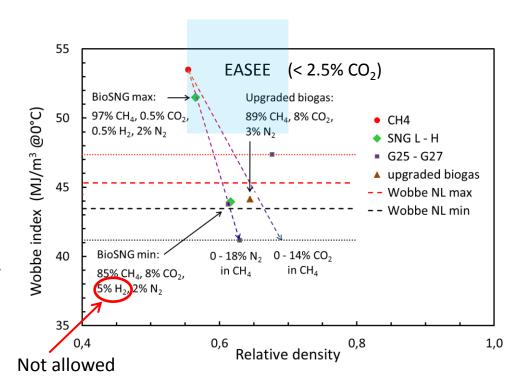
• CH₄ production by Sabatier reaction (4 H₂ + CO₂ => CH₄ + 2 H₂O)

Variable load & limited number of operating hours

=> varying H₂ content & high cost

Future G-gas quality

From 2021 (or later):


Wobbe upper limit will be

increased to 45.3 MJ/m³

CO₂ limit will be increased to 10.5%

 H_2 will be limited to 0.5%

(unless need arises, but only after consultation of parties involved)



Conclusion

- Old-time gas quality may not fit modern world
- New gas may resemble old gas
- Innovation needed for flexibility in gas production and use
- Legal issues to be solved, e.g. responsibility, liability and cost distribution

Thanks to EDGaR sponsors

Ministerie van Economische Zaken, Landbouw en Innovatie

The research program EDGaR acknowledges the contribution of the funding agencies:

The Northern Netherlands Provinces (SNN). This project is co-financed by the European Union, European Fund for Regional Development and the Ministry of Economic Affairs, Agriculture and Innovation. Also the Province of Groningen is co-financing the project.

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl