

Advanced Green Gas Technology (AGATE), phase 1

L.P.L.M. Rabou (ECN) E. Heeres (RUG ST/OC) S. Palstra (RUG CIO)

May 2014 ECN-L--14-023

Advanced Green Gas Technology (AGATE), phase 1

Luc Rabou, Erik Heeres, Sanne Palstra EDGaR 6th Research Day Nunspeet, April 24, 2014

AGATE1 partners, contacts & subjects

• ECN	Luc Rabou	Dry biomass gasification => methane
• RUG ST/OC	Erik Heeres	Wet biomass gasification => methane
• RUG CIO	Sanne Palstra	¹⁴ C analysis for "green" gas

Project finished December 2013

ECN and RUG ST/OC research continues in AGATE2

ECN R&D in AGATE1

- Construction of pressurised test rig for conversion of organic sulfur
- Reforming of aromatic hydrocarbons
- Gas cleaning tests

• Org-S (mainly C₄H₄S) poisons methanation catalyst

HDS slow at 1 bar; methanation requires high pressure

- Aromatic hydrocarbons => coke deposit, catalyst deactivation
- Assess performance

L.P.L.M. Rabou April 24, 2014

State of ECN R&D in 2010

Gasifier(MILENA)Dust removal(filter)Tar removal(OLGA) H_2S removal(SACHA) C_xH_y reformer(SNG)Methanation(SNG)

At atmospheric pressure

ECN test rig in 2010

Energy Delta Gas Research

L.P.L.M. Rabou April 24, 2014

5

ECN pressurised HDS test rig

L.P.L.M. Rabou April 24, 2014

HDS results: thiophene conversion

Benzene reforming

Microflow reactors with different catalysts:

amount of carbon deposit varies significantly

 \Rightarrow Catalyst selected for optimization of conditions

is continued in AGATE phase 2

L.P.L.M. Rabou April 24, 2014

Thiophene adsorption by active carbon

Conclusions of ECN research

Conversion of thiophene improves with pressure HDS reactor size comparable to size of methanation reactors

Benzene reforming requires further research (in AGATE phase 2) Thiophene adsorption possible, but has to compete with BTX BTX + thiophene removal still an option (studied in SNG Impact)

RUG ST/OC R&D in AGATE1

- Supercritical gasification in water (SCWG) batch experiments
- Construction test rig for continuous SCWG experiments
- SCWG continuous experiments

WHY and HOW?

- High conversion of wet biomass to CH₄
- Comparison of heterogeneous catalysts and catalyst nanoparticles
- From simple organic compound to more complex mixture

Batch SCWG: reactor

Tests at ~250 bar and 400°C Volume 14 ml Glycerol in water Several Ru and Ni catalysts commercial or home made powder or nanoparticles

Batch SCWG: residence time

Batch SCWG: gas composition & conversion

Energy Delta Gas Research

Carbon to gas efficiency varies from 19% to 82%

"Char formation" varies from 5% to 33%

groningen

ECN

Batch SCWG nanoparticles

Limited conversion Gas composition does not reach equilibrium Little improvement with residence time

Sintering and/or deposition of catalyst must be prevented

(research continues in AGATE2)

Continuous SCWG: reactor

L.P.L.M. Rabou April 24, 2014

Energy Delta Gas Research

university of groningen

Continuous SCWG: 0.5% Ru/C

Batch SCWG pyrolysis oil

Conclusions of RUG-ST/OC research

80% conversion of glycerol to gas Gas composition close to equilibrium, i.e. nearly pure CH₄/CO₂ at 400°C 250 bar Ru/TiO₂ best performing catalyst Stability of (nanoparticle) catalysts needs improvement Conversion of pyrolysis oil more difficult

RUG CIO R&D in AGATE1

• Develop ¹⁴C analysis method for natural gas, biogas and SNG

WHY and HOW?

- Allow check of origin (i.e. fossil and/or biomass signature)
- Is already used for waste combustion, based on CO₂ capture
 - => combustion of natural gas/biogas/SNG, followed by "standard" analysis

Obstacles in ¹⁴C analysis

• ¹⁴C content in biomass varies with year of growth

Background from nuclear reactions by cosmic rays Peak levels from above-ground nuclear tests

- ¹⁴C/¹²C disproportionation => compare ¹³C/¹²C
- CH₄ and CO₂ in biogas or SNG may have different signatures => separate before combustion
- ECN test rig gases also contain CO, C₂H₄ etc.

22

Uncertainty in ¹⁴C analysis

Results (1)

Quantitative separation, combustion and recovery

of C₂H₄ and CO difficult

Equipment built for separation and combustion

of CH_4 (and C_2H_6) from $CH_4/C_2H_6/CO_2$ mixtures

3 natural gas and 8 biogas samples analysed

=> good agreement between ¹⁴C signals from CO_2 and CH_4/C_2H_6 part:

0-1 pMC (% modern carbon) for natural gas, i.e. no ¹⁴C

102-105 pMC for biogas, 104 and 116 pMC for two landfill gas samples

Results (2)

- Flue gas & raw SNG from ECN test rig
- ¹⁴C results identical when wood is gasified
- ¹⁴C results different for wood/lignite mixture

=> SNG more biomass signature,

flue gas more fossil signature

Conclusions of RUG-CIO research

¹⁴C signature depends on biomass age (also true for waste combustion)
¹⁴C signature for biogas from annual crops accurate within a few percent
¹⁴C signature for landfill gas requires age correction

¹⁴C signature for SNG does reflect fuel signature in case of biomass, but not if a mixture of fossil fuel and biomass is used

A standard ¹⁴C method for biogas and SNG requires further R&D

Thanks to EDGaR sponsors

Ministerie van Economische Zaken

Het onderzoeksprogramma EDGaR is erkentelijk voor de bijdrage van de financieringsinstellingen: Samenwerkingsverband Noord Nederland. Dit project wordt medegefinancierd door het Europees Fonds voor Regionale Ontwikkeling en door het Ministerie van Economische Zaken. Cofinanciering vindt eveneens plaats door de Provincie Groningen. The research program EDGaR acknowledges the contribution of the funding agencies: The Northern Netherlands Provinces (SNN). This project is co-financed by the European Union, European Fund for Regional Development and the Ministry of Economic Affairs. Also the Province of Groningen is co-financing the project.

L.P.L.M. Rabou April 24, 2014

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl