

Energy research Centre of the Netherlands

Synthetic Natural Gas (SNG) from biomass

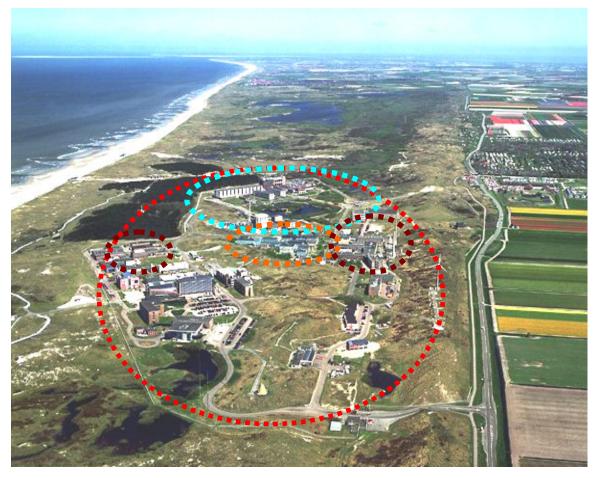
Energy research Centre of the Netherlands

Synthetic Natural Gas (SNG) from biomass

The potential & implementation of SNG by gasification of biomass

Ir. Robin Zwart, Dr. Luc Rabou

Energy research Centre of the Netherlands (ECN) ECN Biomass, Coal & Environmental Research



Content

- Introduction on ECN
- Definitions
- Motivation for Green Natural Gas
- Potential & application
- Green Natural Gas & SNG implementation
- Biomass availability and import
- Economy of SNG production
- SNG development trajectory
- Conclusions

Energy research Centre of the Netherlands In the dunes of North Holland

- Independent energy research institute
- Founded in 1955
- 650 staff
- Annual turnover: 80 M€
- Activities:
 - Biomass, Coal & Environmental Research
 - Solar
 - Wind
 - Hydrogen & Clean Fossil Fuels
 - Energy Efficiency in the Industry
 - Energy in the Built Environment
 - Policy Studies

ECN in a glance

Mission

- ECN is the largest, independent, market oriented, and innovative Dutch energy research institute.
- ECN focuses on the knowledge and information the government needs to develop and evaluate policy and achieve policy objectives in the field of energy, the environment and technological innovation.
- ECN partners industry in the development and implementation of products, processes and technologies important to the transition to sustainable energy management.
- ECN closely works together with Dutch and foreign universities and research institutes and performs a bridging function with implementation by carrying out technological research.

ECN develops high-quality knowledge and technology for the transition to a sustainable energy supply

Definition of "Green Natural Gas" Biogas and SNG

Biogas	- Produced by digestion, contains mainly CH_4 and CO_2
Landfill gas	- Product of landfills, composition similar to biogas
SNG	 Synthetic Natural Gas, contains mainly CH₄ Produced via gasification followed by methanation Main sources: coal and biomass
bio-SNG	- Synthetic Natural Gas from biomass
<i>"green natural gas</i> "	- Comprising both bio-SNG and upgraded biogas/landfill gas

- Complies with specifications for injection to natural gas grid
- Has same properties as natural gas
- Can be used in all existing equipment

Synthetic Natural Gas (SNG)

Commercial availability

SNG

- Commercially available
- Produced via coal gasification followed by methanation
- Main producer: Dakota Gasification Company (USA)

bio-SNG

- Currently still in R&D phase

Green Natural Gas

Characteristics

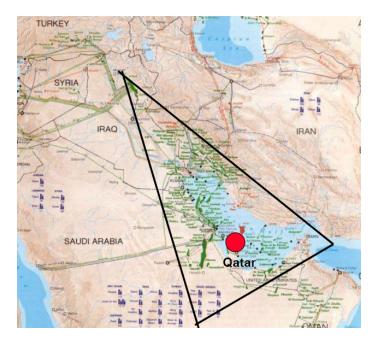
+

- Technology:
- Status:
- Implementation:
- Production scale:
- Potential (NL):

• Feedstock:

digestion / landfill commercially available today small (~300 kW) limited (< 60 PJ/y)

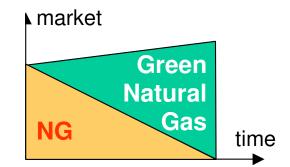
> wet biomass (available in NL)


gasification & methanation in development after 2010 large (~1,000 MW) unlimited (> 240 PJ/y)

dry biomass (import required)

Why Synthetic Natural Gas? International energy developments

- Security of supply
 - decrease dependency on one politically unstable region (crude oil)
 - energy as political 'pressure tool', i.e. Russia (for natural gas)
- Increasing prices of fossil fuels
 fast growing economies China & India
- Fuel diversification
 - decrease dependency on oil
 - use coal, biomass, and natural gas (LNG)
- Depleting resources of fossil fuels
 - crude oil (20-40 years)
 - natural gas (40-60 years)
 - coal (~200 years)
- SNG is solution for medium-long term



Why Green Natural Gas? Environmental considerations

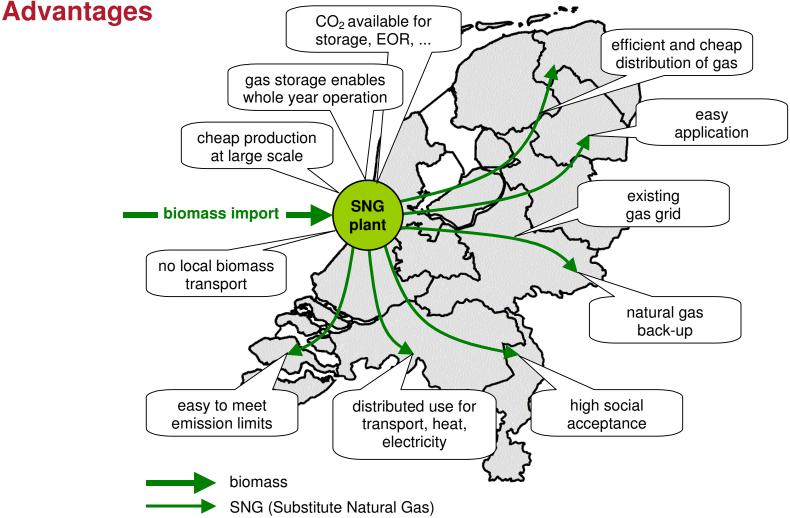
- Reduction of Greenhouse Gas (GHG) emissions
 Kyoto protocol (CO₂)
- Agricultural development

 production of biomass in EU-25
 job creation & rural development
- Local emissions
 - gas is a clean fuel
 - reduce local emissions from transport
 - EU targets for natural gas as transport fuel
- Implementation
 - natural gas market is growing
 - Green Natural Gas is additional to natural gas
 - in time Green Natural Gas can compensate for decrease in natural gas

Why Green Natural Gas? Dutch considerations

- Security of supply is not a big issue (for natural gas)
- Renewable energy targets are main driver (Kyoto)
 substitution of 10% primary energy by renewables in 2020
 biofuels: 2% in 2005, 5.75% in 2010, and 15% in 2020
- "Energy Transition" policy of the government
 30% substitution of primary energy by renewables in 2040
- Energy Transition Working Group "Green Natural Gas" (proposal):
 - à 20% substitution of natural gas by Green Natural Gas in 2030

Potential of Green Natural Gas Dutch situation

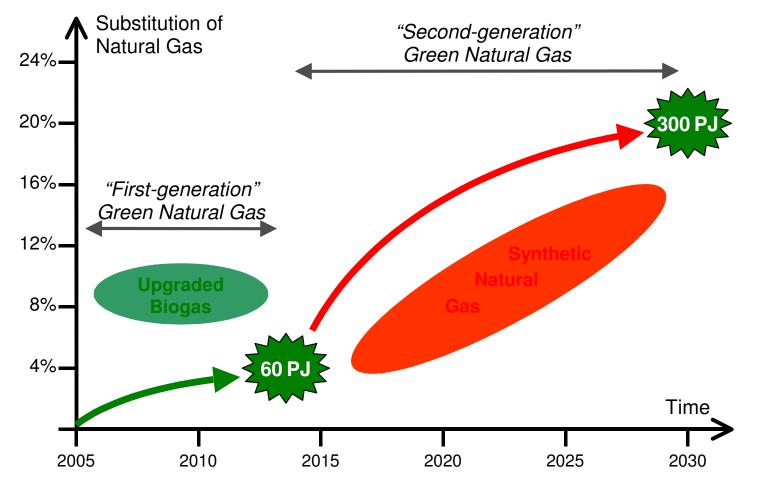

• In the Netherlands, in total 3,300 PJ primary energy is consumed:

[PJ/y]	Coal	Crude oil	Natural Gas	Other	Total
Electricity	200	10	350	300	860
Transport		480		10	490
Heat	40	240	1,100	20	1,400
Chemistry	70	370	90	20	550
Total	310	1,100	1,540	350	3,300

- 20% natural gas substitution = 300 PJ "Green Natural Gas"
- Large potential for Green Natural Gas = **HEAT**
 - 40% of heat is used by distributed small consumers (mainly households)
 - 96% of this heat is from natural gas combustion

Green Natural Gas for renewable heat

Biogas Markets, 30-31 October 2006, Vienna

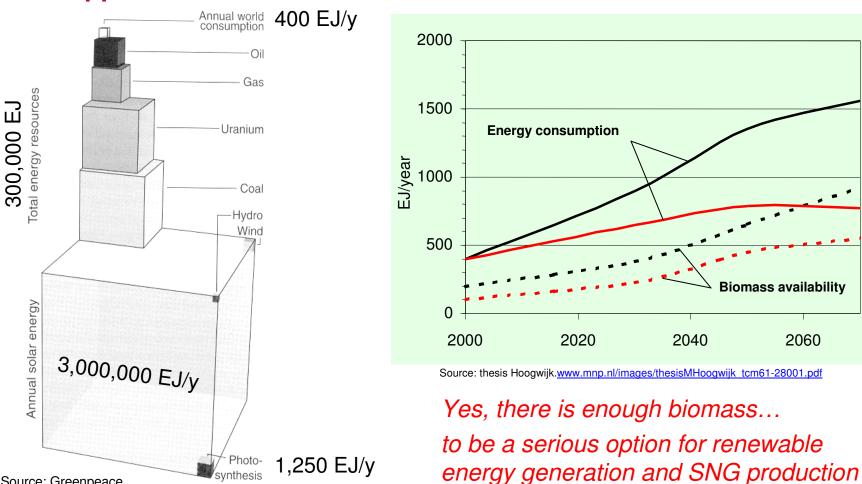

Green Natural Gas for renewable heat Alternatives

- <u>Local biomass combustion</u>
 Disadvantages: large number of small-scale plants in populated areas, relatively expensive due to small scale, emission problems
- <u>Combined Heat & Power (CHP) plants</u>
 Disadvantages: large number of small-scale plants, relatively expensively due to small scale, electricity and heat demand not in balance
- <u>All electric heating</u> Disadvantages: new equipment, new power capacity and network expansion required, only high efficiency combined with (expensive!) heat pumps
- à <u>SNG is the best route for the large-scale production of renewable heat</u> large-scale centralized production plants, transport via gas grid, local consumption, clean conversion

Implementation of Green Natural Gas

Dutch target: 20% substitution (300 PJ) in 2030

Biogas Markets, 30-31 October 2006, Vienna


Implementation of Green Natural Gas Required SNG production capacity

- Biomass feedstock is imported in the Netherlands
- Biomass available in large amounts in a few harbours
- Typical SNG production plant = 1,000 MW_{th}
- Total 12 plants required
- Total annual biomass consumption:
 - 25 million tonnes
 - 2 million tonnes per plant
- Is that a lot? YES!
- Is that unrealistic? NO!

Is there enough biomass??

Two approaches

Economic & Biomass scenario's

Source: Greenpeace

Required biomass import

References (1)

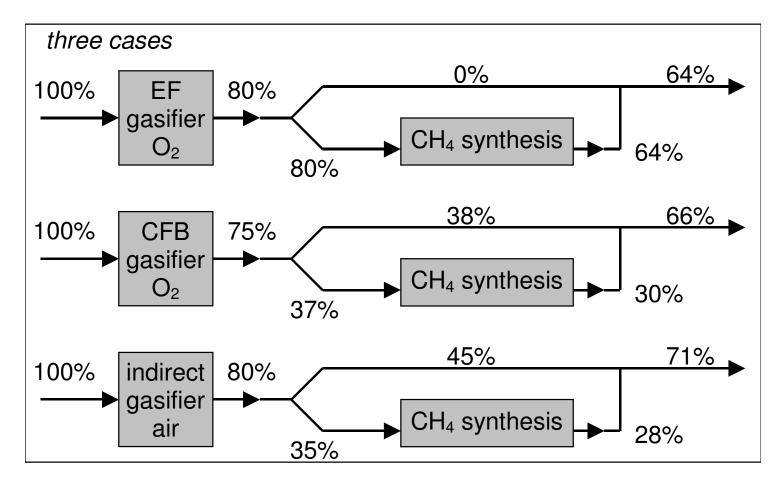
Import & Export by sea shipping (2004)			Transhipment [million tonnes per year]			
Harbour	Position	Share	Total	Coal	Crude oil & Oil products	Ores & Minerals
Netherlands	-	100%	463.8	46.7	160.7	71.0
Rotterdam	1	76%	352.0	25.3	136.0	50.0
Amsterdam	2	11%	50.0	12.7	16.0	6.4
IJmuiden	3	4%	18.0	5.8	0.3	9.0
Delfzijl & Eemshaven	7	0.5%	2.3	0.008	0.013	1.2

- Total biomass requirement for SNG
 - same range as today's coal transshipment in Rotterdam
 - 5% increase for total Netherlands transshipment (from 2004 to 2030)
- Biomass for one plant
 - would double transshipment in Delfzijl

Required biomass import References (2)

Organic materials (2000) [kton/year]	Import	Export	Transhipment
Wood & Pulp	7,010	3,462	10,472
Oil seeds	7,133	1,845	8,978
Meat, Fish & Dairy	2,995	5,028	8,023
Cereals	6,413	630	7,043
Sugar & Cacao	1,926	1,856	3,782

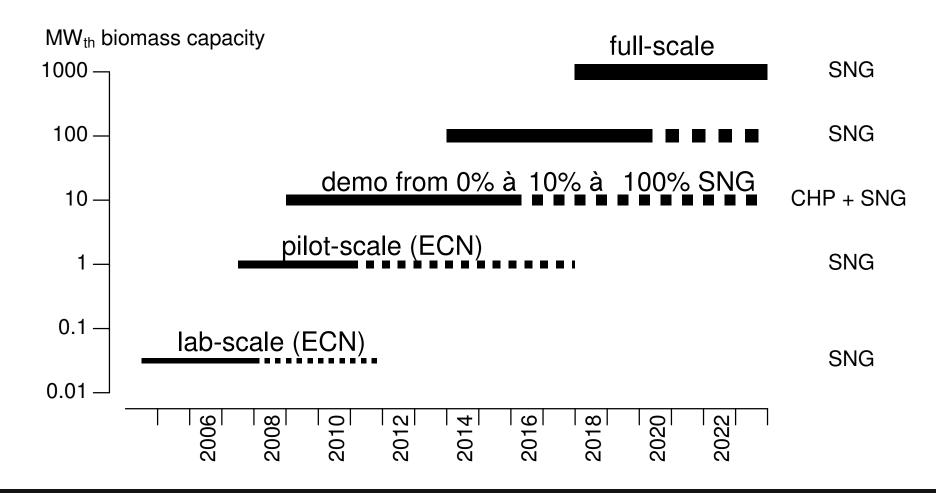
- Total biomass requirement for SNG
 - double of today's wood & pulp transshipment
- Biomass for one plant
 - same order as today's import of sugar & cacao
 - today's cereals transshipment equals biomass import for three SNG plants


Economy

For large-scale SNG production in 2030

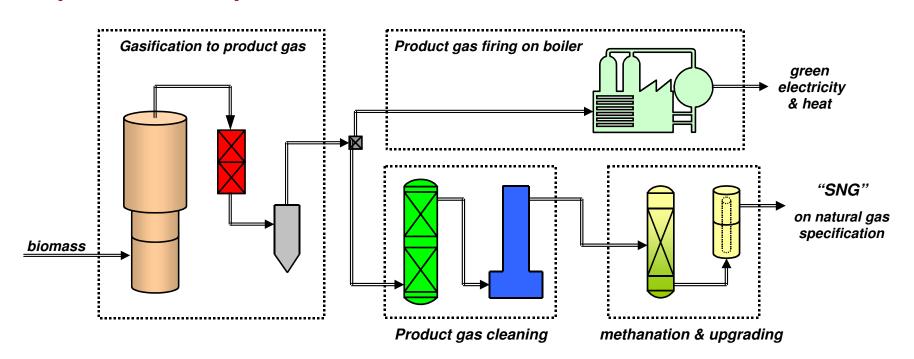
- The projected long-term production costs of SNG = 10 €/GJ_{SNG}
- Additional costs:
 - 4 €/GJ, with a **natural gas price = 6 €/GJ**
 - equivalent to 2.5 €ct/kWh electricity
 - carbon costs: 50-75 \in per ton CO₂
- Support options:
 - subsidy (e.g. "Gas MEP") of 4 €/GJ
 - establishment of CO₂ trading market
 - additional costs of $\sim 2.5 \notin ct$ for each m_n^3 gas consumed
- But what happens to the natural gas price in 2030? - increase to level of SNG production costs
- Financial support <u>required</u> for Development and Demonstration
 new technology
 - first plants are small scale

SNG production: efficiency



EF: entrained flow, CFB: circulating fluidised bed

www.ecn.nl


Implementation trajectory Phased approach

Biogas Markets, 30-31 October 2006, Vienna

SNG demonstration project Slipstream SNG production

Possible line-up of demonstration project

- 10 MW_{th} biomass gasifier (~15 kton/jr)
- Production of green electricity with boiler-firing low risk, direct profit
- slipstream gas for demonstration
- product gas cleaning & "Green Gas"
 attractive demo (subsidies)

Conclusions

- Natural gas increasingly important as fuel for medium-long term
- Green Natural Gas important as renewable fuel
- Green Natural Gas comprises biogas and SNG à SNG will be main source
- SNG mainly for heat in the Netherlands, excellent existing infrastructure
- Biomass import required to meet targets
 - sufficient biomass available globally
 - logistics easily adaptable in existing infrastructure
- Today, SNG is more expensive than natural gas - but SNG is more attractive option than most green electricity routes
- Implementation via phased approach with stepwise larger plants
- Development & Demonstration requires financial support
- SNG offers excellent opportunities for Dutch industry.

Thank you for your attention

For more information, please contact:

Ir. Robin Zwart phone +31 224 56 4574

fax +31 224 56 8487 email <u>zwart@ecn.nl</u>

rabou@ecn.nl

Publications can be found on: <u>www.ecn.nl/en/bkm</u>

Including the latest report ECN-E--06-018 on the development and implementation of an integrated bio SNG system (coming soon)

Visit also: "Phyllis" - *internet database for biomass, coal, and residues:* <u>www.phyllis.nl</u>

"Thersites" – *internet model for tar dewpoint calculations:* <u>www.thersites.nl</u>